Machine Learning Approach for Optimization of Automated Fiber Placement Processes

被引:38
|
作者
Bruening, J. [1 ]
Denkena, B. [1 ]
Dittrich, M. -A. [1 ]
Hocke, T. [2 ]
机构
[1] Leibniz Univ Hannover, Inst Prod Engn & Machine Tools, Univ 2, D-30823 Hannover, Germany
[2] Leibniz Univ Hannover, Inst Prod Engn & Machine Tools, Ottenbecker Damm 12, D-21684 Stade, Germany
关键词
machine learning; assisted process planning; process data visualization;
D O I
10.1016/j.procir.2017.03.295
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Automated Fiber Placement (AFP) processes are commonly deployed in manufacturing of lightweight structures made of carbon fibre reinforced polymer. In general, AFP is connected to individual manufacturing knowledge during process planning and time consuming manual quality inspections. In both cases, automatic solutions provide a high economic potential. Therefore, a machine learning approach for planning, optimizing and inspection of AFP processes is presented. Process data from planning, CNC and online process monitoring is aggregated for the documentation of the part specific manufacturing history and the automated generation of manufacturing knowledge. Within this approach a complete automation of data capturing, data storing, modeling and optimizing is achieved. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:74 / 78
页数:5
相关论文
共 50 条
  • [41] Automated Shmoo Data Analysis: A Machine Learning Approach
    Wang, Wei
    PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2014), 2015, : 212 - 218
  • [42] Machine Learning Approach to Automated Correction of LATEX Documents
    Chuvilin, Kirill
    2016 18TH CONFERENCE OF OPEN INNOVATIONS ASSOCIATION AND SEMINAR ON INFORMATION SECURITY AND PROTECTION OF INFORMATION TECHNOLOGY (FRUCT-ISPIT), 2016, : 33 - 40
  • [43] Automated Motor Tic Detection: A Machine Learning Approach
    Bruegge, Nele Sophie
    Sallandt, Gesine Marie
    Schappert, Ronja
    Li, Frederic
    Siekmann, Alina
    Grzegorzek, Marcin
    Baeumer, Tobias
    Frings, Christian
    Beste, Christian
    Stenger, Roland
    Roessner, Veit
    Fudickar, Sebastian
    Handels, Heinz
    Muenchau, Alexander
    MOVEMENT DISORDERS, 2023, 38 (07) : 1327 - 1335
  • [44] Predictors of NFT Prices: An Automated Machine Learning Approach
    Alon, Ilan
    Bretas, Vanessa P. G.
    Katrih, Villi
    JOURNAL OF GLOBAL INFORMATION MANAGEMENT, 2023, 31 (01)
  • [45] A machine learning approach for automated ULF wave recognition
    Balasis, Georgios
    Aminalragia-Giamini, Sigiava
    Papadimitriou, Constantinos
    Daglis, Ioannis A.
    Anastasiadis, Anastasios
    Haagmans, Roger
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2019, 9
  • [46] An automated packaging planning approach using machine learning
    Knoll, Dino
    Neumeier, Daniel
    Prueglmeier, Marco
    Reinhart, Gunther
    52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS), 2019, 81 : 576 - 581
  • [47] Hyperparameter Optimization of the Machine Learning Model for Distillation Processes
    Oh, Kwang Cheol
    Kwon, Hyukwon
    Park, Sun Yong
    Kim, Seok Jun
    Kim, Junghwan
    Kim, Daehyun
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [48] Dynamic modeling and parameter identification for a gantry-type automated fiber placement machine
    Cheng, Liang
    Wu, Jianbo
    Guo, Yingjie
    Li, Jiangxiong
    Ke, Yinglin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (11-12): : 7243 - 7258
  • [49] A Post-processing Algorithm for Gantry-Type Automated Fiber Placement Machine
    Lu, Hua
    Yang, Fan
    Jin, Hongyu
    Han, Zhenyu
    ADVANCED MATERIALS RESEARCHES AND APPLICATION, 2013, 763 : 187 - 190
  • [50] Dynamic modeling and parameter identification for a gantry-type automated fiber placement machine
    Liang Cheng
    Jianbo Wu
    Yingjie Guo
    Jiangxiong Li
    Yinglin Ke
    The International Journal of Advanced Manufacturing Technology, 2022, 119 : 7243 - 7258