Collapse and revival dynamics of number-squeezed superfluids of ultracold atoms in optical lattices

被引:25
作者
Tiesinga, E. [1 ,2 ]
Johnson, P. R. [3 ]
机构
[1] Natl Inst Stand & Technol, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Gaithersburg, MD 20899 USA
[3] American Univ, Dept Phys, Washington, DC 20016 USA
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 06期
基金
美国国家科学基金会;
关键词
MOTT INSULATOR; PHASE-DIAGRAM; COLD ATOMS; GASES; TRANSITION; PHYSICS; FIELD; MODEL;
D O I
10.1103/PhysRevA.83.063609
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recent experiments have shown a remarkable number of collapse and revival oscillations of the matter-wave coherence of ultracold atoms in optical lattices [Will et al., Nature (London) 465, 197 (2010)]. Using a mean-field approximation to the Bose-Hubbard model, we show that the visibility of collapse and revival interference patterns reveals number squeezing of the initial superfluid state. To describe the dynamics, we use an effective Hamiltonian that incorporates the intrinsic two-body and induced three-body interactions, and we analyze in detail the resulting complex pattern of collapse and revival frequencies generated by virtual transitions to higher bands, as a function of lattice parameters and mean-atom number. Our work shows that a combined analysis of both the multiband, nonstationary dynamics in the final deep lattice and the number squeezing of the initial superfluid state explains important characteristics of optical lattice collapse and revival physics. Finally, by treating the two-and three-body interaction strengths and the coefficients describing the initial superposition of number states as free parameters in a fit to the experimental data, it should be possible to go beyond some of the limitations of our model and obtain insight into the breakdown of the mean-field theory for the initial state or the role of nonperturbative effects in the final-state dynamics.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom Level [J].
Bakr, W. S. ;
Peng, A. ;
Tai, M. E. ;
Ma, R. ;
Simon, J. ;
Gillen, J. I. ;
Foelling, S. ;
Pollet, L. ;
Greiner, M. .
SCIENCE, 2010, 329 (5991) :547-550
[2]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[3]   Efimov physics in cold atoms [J].
Braaten, Eric ;
Hammer, H. -W. .
ANNALS OF PHYSICS, 2007, 322 (01) :120-163
[4]   Two cold atoms in a harmonic trap [J].
Busch, T ;
Englert, BG ;
Rzazewski, K ;
Wilkens, M .
FOUNDATIONS OF PHYSICS, 1998, 28 (04) :549-559
[5]   Feshbach resonances in ultracold gases [J].
Chin, Cheng ;
Grimm, Rudolf ;
Julienne, Paul ;
Tiesinga, Eite .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1225-1286
[6]   Tunneling-induced damping of phase coherence revivals in deep optical lattices [J].
Fischer, Uwe R. ;
Schuetzhold, Ralf .
PHYSICAL REVIEW A, 2008, 78 (06)
[7]  
FISHER MPA, 1989, PHYS REV B, V40, P546, DOI 10.1063/1.38820
[8]   PHASE-DIAGRAM OF THE BOSE-HUBBARD MODEL [J].
FREERICKS, JK ;
MONIEN, H .
EUROPHYSICS LETTERS, 1994, 26 (07) :545-550
[9]   In situ observation of incompressible Mott-insulating domains in ultracold atomic gases [J].
Gemelke, Nathan ;
Zhang, Xibo ;
Hung, Chen-Lung ;
Chin, Cheng .
NATURE, 2009, 460 (7258) :995-U75
[10]   Collapse and revival of the matter wave field of a Bose-Einstein condensate [J].
Greiner, M ;
Mandel, O ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 419 (6902) :51-54