Positive almost Dunford-Pettis operators and their duality

被引:28
作者
Aqzzouz, Belmesnaoui [2 ]
Elbour, Aziz [3 ]
Wickstead, Anthony W. [1 ]
机构
[1] Queens Univ Belfast, Pure Math Res Ctr, Belfast, Antrim, North Ireland
[2] Univ Mohammed V Souissi, Fac Sci Econ Jurid & Sociales, Dept Econ, Salaaljadida, Morocco
[3] Univ Ibn Tofail, Fac Sci, Dept Math, Kenitra, Morocco
关键词
Almost Dunford-Pettis operator; Order continuous norm; Positive Schur property; KB-space; SEQUENTIAL CONVERGENCE;
D O I
10.1007/s11117-010-0050-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study some properties of almost Dunford-Pettis operators and we characterize pairs of Banach lattices for which the adjoint of an almost Dunford-Pettis operator inherits the same property and look at conditions under which an operator is almost Dunford-Pettis whenever its adjoint is.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 14 条
[1]  
Aliprantis C. D., 2006, POSITIVE OPERATORS
[2]  
[Anonymous], 1991, Banach lattices
[3]   Some Generalizations on Positive Dunford-Pettis Operators [J].
Aqzzouz, Belmesnaoui ;
Bouras, Khalid ;
Elbour, Aziz .
RESULTS IN MATHEMATICS, 2009, 54 (3-4) :207-218
[4]   COMPACT-OPERATORS IN BANACH-LATTICES [J].
DODDS, PG ;
FREMLIN, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) :287-320
[5]   WEAK SEQUENTIAL CONVERGENCE IN DUAL OF A BANACH-SPACE DOES NOT IMPLY NORM CONVERGENCE [J].
JOSEFSON, B .
ARKIV FOR MATEMATIK, 1975, 13 (01) :79-89
[6]  
NAKANO H, 1941, P IMP ACAD TOKYO, V17, P311, DOI DOI 10.3792/PIA/1195578670
[7]  
Nakano H., 1941, P IMP ACAD TOKYO, V17, P301
[8]   W] SEQUENTIAL CONVERGENCE [J].
NISSENZWEIG, A .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (3-4) :266-272
[9]   An isomorphic version of Nakano's characterisation of C0(Σ) [J].
Wickstead, Anthony W. .
POSITIVITY, 2007, 11 (04) :609-615
[10]  
Wnuk W., 1993, MATH JAPON, V38, P1077