MICROSTRUCTURES SIMULATION OF MAGNESIUM-BASED ALLOYS DURING SOLIDIFICATION BY PHASE-FIELD METHOD

被引:0
作者
Wang, M. Y. [1 ]
Jing, T. [1 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
来源
TMS 2010 139TH ANNUAL MEETING & EXHIBITION - SUPPLEMENTAL PROCEEDINGS, VOL 2: MATERIALS CHARACTERIZATION, COMPUTATION AND MODELING AND ENERGY | 2010年
关键词
Solid-liquid interface; phase field modeling; Mg alloys; dendrites; microstructures; DENDRITIC SOLIDIFICATION; THERMODYNAMIC DATABASE; CRYSTAL-GROWTH; MODEL; EVOLUTION; TRANSITIONS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An expression is proposed for the anisotropic function of crystal-melt interfacial free energy for hexagonal metals, based on the combination of experiments and crystal structure. The phase field model of alloys, whose density free energy is built on the basis of thermodynamic extended substitutional-regular-solution approximation, incorporated into anisotropic function reflecting hexagonal symmetry, is established. Numerical computations of primary hcp-Mg phase dendritic growth in the freezing process of magnesium-based alloys melts are implemented. The three-dimensional dendritic morphologies of magnesium alloys microstructures, whose hierarchical branches can be seen clearly, are obtained, which have been well in agreement with experimental results and are obviously different from that of would be usually expected.
引用
收藏
页码:721 / 728
页数:8
相关论文
共 50 条
  • [21] Investigation into microsegregation during solidification of a binary alloy by phase-field simulations
    Li, Junjie
    Wang, Jincheng
    Yang, Gencang
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (04) : 1217 - 1222
  • [22] Phase-field simulation study on dendritic growth behavior during bilateral directional solidification
    Zeng, Hong-bo
    Ai, Xin-gang
    Chen, Ming
    Guan, Rui
    Chao, Yu-fu
    Zhang, Jia-cai
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [23] Phase-Field Simulation of Microstructure Evolution in Industrial A2214 Alloy During Solidification
    Ming Wei
    Ying Tang
    Lijun Zhang
    Weihua Sun
    Yong Du
    Metallurgical and Materials Transactions A, 2015, 46 : 3182 - 3191
  • [24] Upgrading CALPHAD to microstructure simulation: the phase-field method
    Fries, Suzana G.
    Boettger, Bemd
    Eiken, Janin
    Steinbach, Ingo
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2009, 100 (02) : 128 - 134
  • [25] Trapping of Impurity in a Dilute Solution: Phase-Field Simulation of Solidification
    Novokreshchenova, A. A.
    Lebedev, V. G.
    Galenko, P. K.
    TECHNICAL PHYSICS, 2021, 66 (06) : 768 - 778
  • [26] Surface rippling during solidification of binary polycrystalline alloy: Insights from 3-D phase-field simulations
    Ankit, Kumar
    Xing, Hui
    Selzer, Michael
    Nestler, Britta
    Glicksman, Martin E.
    JOURNAL OF CRYSTAL GROWTH, 2017, 457 : 52 - 59
  • [27] Three-dimensional phase-field simulation of micropore formation during solidification: Morphological analysis and pinching effect
    Meidani, H.
    Desbiolles, J. -L.
    Jacot, A.
    Rappaz, M.
    ACTA MATERIALIA, 2012, 60 (6-7) : 2518 - 2527
  • [28] Simulation of liquid channel of Fe-C alloy directional solidification by phase-field method
    Kang Yong-Sheng
    Zhao Yu-Hong
    Hou Hua
    Jin Yu-Chun
    Chen Li-Wen
    ACTA PHYSICA SINICA, 2016, 65 (18)
  • [29] Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study
    Tourret, D.
    Song, Y.
    Clarke, A. J.
    Karma, A.
    ACTA MATERIALIA, 2017, 122 : 220 - 235
  • [30] Examination of dendritic growth and microsegregation during solidification of Al-Li binary alloy using the phase-field simulation coupling CALPHAD data
    Chen, Qingqing
    Zhang, Lu
    Tang, Sai
    Liang, Chaoping
    Ma, Yunzhu
    Liu, Wensheng
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2021, 74