MICROSTRUCTURES SIMULATION OF MAGNESIUM-BASED ALLOYS DURING SOLIDIFICATION BY PHASE-FIELD METHOD

被引:0
作者
Wang, M. Y. [1 ]
Jing, T. [1 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
来源
TMS 2010 139TH ANNUAL MEETING & EXHIBITION - SUPPLEMENTAL PROCEEDINGS, VOL 2: MATERIALS CHARACTERIZATION, COMPUTATION AND MODELING AND ENERGY | 2010年
关键词
Solid-liquid interface; phase field modeling; Mg alloys; dendrites; microstructures; DENDRITIC SOLIDIFICATION; THERMODYNAMIC DATABASE; CRYSTAL-GROWTH; MODEL; EVOLUTION; TRANSITIONS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An expression is proposed for the anisotropic function of crystal-melt interfacial free energy for hexagonal metals, based on the combination of experiments and crystal structure. The phase field model of alloys, whose density free energy is built on the basis of thermodynamic extended substitutional-regular-solution approximation, incorporated into anisotropic function reflecting hexagonal symmetry, is established. Numerical computations of primary hcp-Mg phase dendritic growth in the freezing process of magnesium-based alloys melts are implemented. The three-dimensional dendritic morphologies of magnesium alloys microstructures, whose hierarchical branches can be seen clearly, are obtained, which have been well in agreement with experimental results and are obviously different from that of would be usually expected.
引用
收藏
页码:721 / 728
页数:8
相关论文
共 50 条
  • [1] Phase-field simulation of micropores constrained by the dendritic network during solidification
    Meidani, H.
    Jacot, A.
    ACTA MATERIALIA, 2011, 59 (08) : 3032 - 3040
  • [2] Phase-field simulation of microstructure formation in technical magnesium alloys
    Eiken, Janin
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2010, 101 (04) : 503 - 509
  • [3] Phase-field method of materials microstructures and properties
    Chen, Long-Qing
    Moelans, Nele
    MRS BULLETIN, 2024, 49 (06) : 551 - 555
  • [4] Phase field simulation of microstructures of Mg and Al alloys
    Liu, H.
    Nie, J. F.
    MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (18) : 2159 - 2172
  • [5] Phase-field method based simulation of martensitic transformation in porous alloys
    Teng, Li
    Qiu, Wen-Ting
    Shen, Gong
    ACTA PHYSICA SINICA, 2023, 72 (14)
  • [6] Simulation of Localized Stress Impact on Solidification Pattern during Plasma Cladding of WC Particles in Nickel-Based Alloys by Phase-Field Method
    Wei, Dongsheng
    Chen, Ming
    Zhang, Chunlin
    Ai, Xingang
    Xie, Zhiwen
    METALS, 2024, 14 (09)
  • [7] Phase-Field Simulation of Microsegregation and Dendritic Growth During Solidification of Hypoeutectic Al-Cu alloys
    Ferreira, Alexandre Furtado
    Paradela, Kessia Gomes
    Felipe Junior, Paulo
    Alcantara Junior, Zilmar
    Garcia, Amauri
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2017, 20 (02): : 423 - 429
  • [8] Analysis of Solidification Microstructure by Phase-Field Method
    Ohno, Munekazu
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2014, 100 (11): : 758 - 764
  • [9] Phase-field simulation during directional solidification of a binary alloy using adaptive finite element method
    Takaki, T
    Fukuoka, T
    Tomita, Y
    JOURNAL OF CRYSTAL GROWTH, 2005, 283 (1-2) : 263 - 278
  • [10] Phase-field Simulation of Interface Effect during Grain Nucleation of Solidification Processing
    Wang Yongbiao
    Wang Yongxin
    Chen Zheng
    Zhao Yan
    Liu Xiaofeng
    Tang Hongkui
    RARE METAL MATERIALS AND ENGINEERING, 2012, 41 (06) : 1045 - 1048