A new SPH density formulation for 3D free-surface flows

被引:8
|
作者
Geara, S. [1 ,3 ,4 ]
Martin, S. [1 ]
Adami, S. [2 ]
Petry, W. [3 ]
Allenou, J. [4 ]
Stepnik, B. [4 ]
Bonnefoy, O. [1 ]
机构
[1] Univ Lyon, Ctr SPIN, CNRS, Mines St Etienne,UMR 5307 LGF, F-42023 St Etienne, France
[2] Tech Univ Munich, Chair Aerodynam & Fluid Mech, D-85748 Garching, Germany
[3] Tech Univ Munich, Res Neutron Source Heinz Maier Leibnitz FRM II, D-85748 Garching, Germany
[4] Framatome France, CERCA TM, ZI Berauds, BP 1114, F-26104 Romans Sur Isere, France
关键词
SPH; Free surface; Density correction; Curvature; Surface tension; SMOOTHED PARTICLE HYDRODYNAMICS;
D O I
10.1016/j.compfluid.2021.105193
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a new density formulation for free surface simulations using SPH is presented. This new approach is applicable to surface-tension driven free surface flows with strong topological changes. The density is corrected for each particle by analytically calculating the missing volume of the support domain. This calculation depends on two parameters: the local curvature and the distance of each particle to the free surface. This method was validated and compared with the density evolution method for two test cases: the square droplet and the Rayleigh-Plateau instability. It shows more stable results and a better representation of the free surface.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A New Parallel SPH Method for 3D Free Surface Flows
    Ferrari, A.
    Dumbser, M.
    Toro, E. F.
    Armanini, A.
    HIGH PERFORMANCE COMPUTING ON VECTOR SYSTEMS 2009, 2010, : 179 - 188
  • [2] A new 3D parallel SPH scheme for free surface flows
    Ferrari, Angela
    Dumbser, Michael
    Toro, Eleuterio F.
    Armanini, Aronne
    COMPUTERS & FLUIDS, 2009, 38 (06) : 1203 - 1217
  • [3] A 3D Simulation of a Moving Solid in Viscous Free-Surface Flows by Coupling SPH and DEM
    Qiu, Liu-Chao
    Liu, Yi
    Han, Yu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [4] Foreword: SPH for free-surface flows
    Gomez-Gesteira, Moncho
    Rogers, Benedict D.
    Violeau, Damien
    Maria Grassa, Jose
    Crespo, Alex J. C.
    JOURNAL OF HYDRAULIC RESEARCH, 2010, 48 : 3 - 5
  • [5] SIMULATING FREE-SURFACE FLOWS WITH SPH
    MONAGHAN, JJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (02) : 399 - 406
  • [6] Conservation of circulation in SPH for 2D free-surface flows
    Antuono, M.
    Colagrossi, A.
    Le Touze, D.
    Monaghan, J. J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (05) : 583 - 606
  • [7] A 3D finite element model for free-surface flows
    Leupi, C.
    Miglio, E.
    Altinakar, M.
    Quarteroni, A.
    Deville, M. O.
    COMPUTERS & FLUIDS, 2009, 38 (10) : 1903 - 1916
  • [8] JOSEPHINE: A parallel SPH code for free-surface flows
    Cherfils, J. M.
    Pinon, G.
    Rivoalen, E.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (07) : 1468 - 1480
  • [9] Free-surface effects in 3D dislocation dynamics: Formulation and modeling
    Khraishi, TA
    Zbib, HM
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2002, 124 (03): : 342 - 351
  • [10] A new surface tension formulation in smoothed particle hydrodynamics for free-surface flows
    Liu, Wen-Bin
    Ma, Dong-Jun
    Zhang, Ming-Yu
    He, An-Min
    Liu, Nan-Sheng
    Wang, Pei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 439