Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy

被引:95
作者
Van Laar, Victor S. [1 ,2 ]
Roy, Nikita [2 ,3 ]
Liu, Annie [2 ,3 ,4 ]
Rajprohat, Swati [2 ,5 ]
Arnold, Beth [1 ,2 ]
Dukes, April A. [1 ,2 ]
Holbein, Cory D. [6 ]
Berman, Sarah B. [1 ,2 ]
机构
[1] Univ Pittsburgh, Dept Neurol, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Pittsburgh Inst Neurodegenerat Dis, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Sch Med, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Ctr Neurosci, Pittsburgh, PA 15213 USA
[5] Univ Pittsburgh, Dept Neurosci, Pittsburgh, PA 15213 USA
[6] Univ Pittsburgh, Dept Stat, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
Parkinson's disease; Parkin; Mitochondria; Mitophagy; Endoplasmic reticulum; Glutamate; NMDA receptor; Excitotoxicity; N-Acetyl cysteine; Antioxidant; NIGRA DOPAMINE NEURONS; SUBSTANTIA-NIGRA; DAMAGED MITOCHONDRIA; OXIDATIVE STRESS; NEURODEGENERATIVE DISEASES; FOREBRAIN NEURONS; CORTICAL-NEURONS; ALPHA-SYNUCLEIN; SYNAPTIC CLEFT; REQUIRES PINK1;
D O I
10.1016/j.nbd.2014.11.015
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Disruption of the dynamic properties of mitochondria (fission, fusion, transport, degradation, and biogenesis) has been implicated in the pathogenesis of neurodegenerative disorders, including Parkinson's disease (PD). Parkin, the product of gene PARK2 whose mutation causes familial PD, has been linked to mitochondrial quality control via its role in regulating mitochondrial dynamics, including mitochondrial degradation via mitophagy. Models using mitochondrial stressors in numerous cell types have elucidated a PINK1-dependent pathway whereby Parkin accumulates on damaged mitochondria and targets them for mitophagy. However, the role Parkin plays in regulating mitochondrial homeostasis specifically in neurons has been less clear. We examined whether a stressor linked to neurodegeneration, glutamate excitotoxicity, elicits Parkin-mitochondrial translocation and mitophagy in neurons. We found that brief, acute exposure to glutamate causes Parkin translocation to mitochondria in neurons, in a calcium- and N-methyl-D-aspartate (NMDA) receptor-dependent manner. In addition, we found that Parkin accumulates on endoplasmic reticulum (ER) and mitochondrial/ER junctions following excitotoxicity, supporting a role for Parkin in mitochondrial-ER crosstalk in mitochondrial homeostasis. Despite significant Parkin-mitochondria translocation, however, we did not observe mitophagy under these conditions. To further investigate, we examined the role of glutamate-induced oxidative stress in Parkin-mitochondria accumulation. Unexpectedly, we found that glutamate-induced accumulation of Parkin on mitochondria was promoted by the antioxidant N-acetyl cysteine (NAC), and that co-treatment with NAC facilitated Parkin-associated mitophagy. These results suggest the possibility that mitochondrial depolarization and oxidative damage may have distinct pathways associated with Parkin function in neurons, which may be critical in understanding the role of Parkin in neurodegeneration. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:180 / 193
页数:14
相关论文
共 88 条
[1]   AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons [J].
Amadoro, G. ;
Corsetti, V. ;
Florenzano, F. ;
Atlante, A. ;
Ciotti, M. T. ;
Mongiardi, M. P. ;
Bussani, R. ;
Nicolin, V. ;
Nori, S. L. ;
Campanella, M. ;
Calissano, P. .
NEUROBIOLOGY OF DISEASE, 2014, 62 :489-507
[2]   Integrating multiple aspects of mitochondrial dynamics in neurons: Age-related differences and dynamic changes in a chronic rotenone model [J].
Arnold, Beth ;
Cassady, Steven J. ;
VanLaar, Victor S. ;
Berman, Sarah B. .
NEUROBIOLOGY OF DISEASE, 2011, 41 (01) :189-200
[3]   Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin [J].
Ashrafi, Ghazaleh ;
Schlehe, Julia S. ;
LaVoie, Matthew J. ;
Schwarz, Thomas L. .
JOURNAL OF CELL BIOLOGY, 2014, 206 (05) :655-670
[4]   Glutamate transporter currents in Bergmann glial cells follow the time course of extrasynaptic glutamate [J].
Bergles, DE ;
Dzubay, JA ;
Jahr, CE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14821-14825
[5]  
Blandini F, 2010, FUNCT NEUROL, V25, P65
[6]  
Bozidis P., 2007, CURR PROTOC CELL BIO, V37, P3271
[7]   Stages in the development of Parkinson's disease-related pathology [J].
Braak, H ;
Ghebremedhin, E ;
Rüb, U ;
Bratzke, H ;
Del Tredici, K .
CELL AND TISSUE RESEARCH, 2004, 318 (01) :121-134
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   Stimulation of glutamate receptors in cultured hippocampal neurons causes Ca2+-dependent mitochondrial contraction [J].
Brustovetsky, Tatiana ;
Li, Viacheslav ;
Brustovetsky, Nickolay .
CELL CALCIUM, 2009, 46 (01) :18-29
[10]   Spatial Parkin Translocation and Degradation of Damaged Mitochondria via Mitophagy in Live Cortical Neurons [J].
Cai, Qian ;
Zakaria, Hesham Mostafa ;
Simone, Anthony ;
Sheng, Zu-Hang .
CURRENT BIOLOGY, 2012, 22 (06) :545-552