Relaxing Nonholonomic Constraints to Eliminate Chattering From Time-Optimal Control Solutions

被引:2
作者
Bazzi, Salah [1 ]
Shammas, Elie [1 ]
Asmar, Daniel [1 ]
机构
[1] Amer Univ Beirut, Dept Mech Engn, Vis & Robot Lab, Beirut 11072020, Lebanon
关键词
Kinematics; motion and path planning; nonholonomic motion planning; optimization and optimal control; wheeled robots; OPTIMAL TRAJECTORIES; CURVATURE;
D O I
10.1109/LRA.2017.2708162
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter presents a new approach to tackle the problem of infinite chattering, observed at bang-singular junctions of the minimum-time trajectories of car-like robots with bounded angular acceleration control. To eliminate chattering from time-optimal control solutions, we propose to relax the ideal nonholonomic constraint of no-skidding. A proof is presented to demonstrate that this relaxation eliminates chattering from the bang-singular junctions. Finally, a solution to the time-optimal synthesis under the condition of small skid angles is provided.
引用
收藏
页码:1817 / 1824
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 2012, GEOMETRIC OPTIMAL CO
[2]  
[Anonymous], 2012, Optimal Control Theory: An Introduction
[3]  
Balkcom D. J., 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P2499, DOI 10.1109/ROBOT.2000.846404
[4]   Time-optimal trajectories for an omni-directional vehicle [J].
Balkcom, Devin J. ;
Kavathekar, Paritosh A. ;
Mason, Matthew T. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2006, 25 (10) :985-999
[5]   A novel method for modeling skidding for systems with nonholonomic constraints [J].
Bazzi, Salah ;
Shammas, Elie ;
Asmar, Daniel .
NONLINEAR DYNAMICS, 2014, 76 (02) :1517-1528
[6]  
BOISSONNAT JD, 1994, 2160 I NAT RECH INF
[7]   Underwater vehicles: The minimum time problem [J].
Chyba, M ;
Sussmann, H ;
Maurer, H ;
Vossen, G .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :1370-1375
[8]   Time-optimal trajectories with bounded curvature in anisotropic media [J].
Dolinskaya, Irina S. ;
Maggiar, Alvaro .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (14) :1761-1793
[10]  
Lyu YH, 2014, IEEE INT CONF ROBOT, P106, DOI 10.1109/ICRA.2014.6906596