Backward volume vs Damon-Eshbach: A traveling spin wave spectroscopy comparison

被引:23
作者
Bhaskar, U. K. [1 ]
Talmelli, G. [2 ,3 ]
Ciubotaru, F. [3 ]
Adelmann, C. [3 ]
Devolder, T. [1 ]
机构
[1] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, F-91120 Palaiseau, France
[2] Katholieke Univ Leuven, Dept Mat Kunde, B-3001 Leuven, Belgium
[3] IMEC, B-3001 Leuven, Belgium
关键词
Cobalt compounds - Light velocity - Wave transmission - Iron compounds - Antennas;
D O I
10.1063/1.5125751
中图分类号
O59 [应用物理学];
学科分类号
摘要
We compare the characteristics of electrically transduced Damon-Eshbach spin-wave (DESW) and backward volume spin-wave (BVSW) configurations within the same, 30 nm thick, ferromagnetic, CoFeB waveguide. Sub-micrometer U-shaped antennas are used to deliver the necessary in-plane and out-of-plane RF fields. We measure the spin-wave transmission with respect to in-plane field orientation, frequency, and propagation distance. Unlike DESW, BVSWs are reciprocally transduced and collected for either direction of propagation, but their ability to transport energy is lower than DESWs for two reasons. This arises first because BVSWs are inductively transduced less efficiently than DESWs. Also, in the range of wavevectors (similar to 5 rad mu m(-1)) typically excited by our antennas, the group velocity of BVSWs stays lower than that of DESW, which leads to reduced propagation ability that impact transmission signals in an exponential manner. In contrast, the group velocity of DESWs is maximum at low fields and decreases continuously with the applied field. The essential features of the measured SW characteristics are well reciprocated by a simple, 1D analytical model, which can be used to assess the potential of each configuration. Published under license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 32 条
[1]   SAW and BAW Technologies for RF Filter Applications: A Review of the Relative Strengths and Weaknesses [J].
Aigner, Robert .
2008 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 AND APPENDIX, 2008, :582-589
[2]  
Auld BA., 1973, Acoustic fields and waves in solids
[3]   Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy [J].
Belmeguenai, Mohamed ;
Adam, Jean-Paul ;
Roussigne, Yves ;
Eimer, Sylvain ;
Devolder, Thibaut ;
Kim, Joo-Von ;
Cherif, Salim Mourad ;
Stashkevich, Andrey ;
Thiaville, Andre .
PHYSICAL REVIEW B, 2015, 91 (18)
[4]   Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect [J].
Bracher, T. ;
Fabre, M. ;
Meyer, T. ;
Fischer, T. ;
Auffret, S. ;
Boulle, O. ;
Ebels, U. ;
Pirro, P. ;
Gaudin, G. .
NANO LETTERS, 2017, 17 (12) :7234-7241
[5]   An analog magnon adder for all-magnonic neurons [J].
Braecher, T. ;
Pirro, P. .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (15)
[6]   Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier [J].
Braecher, T. ;
Heussner, F. ;
Meyer, T. ;
Fischer, T. ;
Geilen, M. ;
Heinz, B. ;
Laegel, B. ;
Hillebrands, B. ;
Pirro, P. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 450 :60-64
[7]   Electric-field-induced spin wave generation using multiferroic magnetoelectric cells [J].
Cherepov, Sergiy ;
Amiri, Pedram Khalili ;
Alzate, Juan G. ;
Wong, Kin ;
Lewis, Mark ;
Upadhyaya, Pramey ;
Nath, Jayshankar ;
Bao, Mingqiang ;
Bur, Alexandre ;
Wu, Tao ;
Carman, Gregory P. ;
Khitun, Alexander ;
Wang, Kang L. .
APPLIED PHYSICS LETTERS, 2014, 104 (08)
[8]  
Chumak AV, 2015, NAT PHYS, V11, P453, DOI [10.1038/nphys3347, 10.1038/NPHYS3347]
[9]   Magnon transistor for all-magnon data processing [J].
Chumak, Andrii V. ;
Serga, Alexander A. ;
Hillebrands, Burkard .
NATURE COMMUNICATIONS, 2014, 5
[10]   All electrical propagating spin wave spectroscopy with broadband wavevector capability [J].
Ciubotaru, F. ;
Devolder, T. ;
Manfrini, M. ;
Adelmann, C. ;
Radu, I. P. .
APPLIED PHYSICS LETTERS, 2016, 109 (01)