Probing local non-Gaussianities within a Bayesian framework

被引:9
|
作者
Elsner, F. [1 ]
Wandelt, B. D. [2 ,3 ]
Schneider, M. D. [4 ]
机构
[1] Max Planck Inst Astrophys, D-85748 Garching, Germany
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[4] Univ Durham, Inst Computat Cosmol, Dept Phys, Durham DH1 3LE, England
来源
ASTRONOMY & ASTROPHYSICS | 2010年 / 513卷
关键词
cosmic microwave background; cosmological parameters; methods: data analysis; methods: numerical; methods: statistical; PRIMORDIAL NON-GAUSSIANITY; DISCRETE OBJECT DETECTION; ASTRONOMICAL DATA SETS; INFLATIONARY UNIVERSE; POWER SPECTRUM; MONTE-CARLO; MICROWAVE; TEMPERATURE; MAPS; PERTURBATIONS;
D O I
10.1051/0004-6361/200913214
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We outline the Bayesian approach to inferring f(NL), the level of non-Gaussianities of local type. Phrasing f(NL) inference in a Bayesian framework takes advantage of existing techniques to account for instrumental effects and foreground contamination in CMB data and takes into account uncertainties in the cosmological parameters in an unambiguous way. Methods. We derive closed form expressions for the joint posterior of f(NL) and the reconstructed underlying curvature perturbation, Phi, and deduce the conditional probability densities for f(NL) and Phi. Completing the inference problem amounts to finding the marginal density for f(NL). For realistic data sets the necessary integrations are intractable. We propose an exact Hamiltonian sampling algorithm to generate correlated samples from the f(NL) posterior. For sufficiently high signal-to-noise ratios, we can exploit the assumption of weak non-Gaussianity to find a direct Monte Carlo technique to generate independent samples from the posterior distribution for f(NL). We illustrate our approach using a simplified toy model of CMB data for the simple case of a 1D sky. Results. When applied to our toy problem, we find that, in the limit of high signal-to-noise, the sampling efficiency of the approximate algorithm outperforms that of Hamiltonian sampling by two orders of magnitude. When f(NL) is not significantly constrained by the data, the more efficient, approximate algorithm biases the posterior density towards f(NL) = 0.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Scale-dependent non-Gaussianities in the CMB data identified with Minkowski functionals and scaling indices
    Modest, H. I.
    Raeth, C.
    Banday, A. J.
    Rossmanith, G.
    Suetterlin, R.
    Basak, S.
    Delabrouille, J.
    Gorski, K. M.
    Morfill, G. E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 428 (01) : 551 - 562
  • [2] The real shape of non-Gaussianities
    Lewis, Antony
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (10):
  • [3] Probing non-Gaussianities in the cosmic microwave background on an incomplete sky using surrogates
    Rossmanith, G.
    Modest, H.
    Raeth, C.
    Banday, A. J.
    Gorski, K. M.
    Morfill, G.
    PHYSICAL REVIEW D, 2012, 86 (08):
  • [4] CMB non-Gaussianities from the "local" universe
    Aghanim, N
    Castro, PG
    Forni, O
    Kunz, M
    NEW ASTRONOMY REVIEWS, 2003, 47 (8-10) : 805 - 810
  • [5] LOCAL NON-GAUSSIANITY IN THE COSMIC MICROWAVE BACKGROUND THE BAYESIAN WAY
    Elsner, Franz
    Wandelt, Benjamin D.
    ASTROPHYSICAL JOURNAL, 2010, 724 (02) : 1262 - 1269
  • [6] Search for Non-Gaussianities in the WMAP Data with the Scaling Index Method
    Rossmanith, G.
    Modest, H.
    Raeth, C.
    Banday, A. J.
    Gorski, K. M.
    Morfill, G.
    ADVANCES IN ASTRONOMY, 2011, 2011
  • [7] A weak lensing view on primordial non-Gaussianities
    Schaefer, Bjoern Malte
    Grassi, Alessandra
    Gerstenlauer, Mischa
    Byrnes, Christian T.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 421 (01) : 797 - 807
  • [8] NON-GAUSSIANITIES IN THE LOCAL CURVATURE OF THE FIVE-YEAR WMAP DATA
    Rudjord, Oystein
    Groeneboom, Nicolaas E.
    Hansen, Frode K.
    Cabella, Paolo
    ASTROPHYSICAL JOURNAL, 2010, 718 (01) : 66 - 71
  • [9] Scale-dependent non-Gaussianities in the WMAP data as identified by using surrogates and scaling indices
    Raeth, C.
    Banday, A. J.
    Rossmanith, G.
    Modest, H.
    Suetterlin, R.
    Gorski, K. M.
    Delabrouille, J.
    Morfill, G. E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (03) : 2205 - 2214
  • [10] Local Primordial Non-Gaussianities and super-sample variance
    Castorina, Emanuele
    Dizgah, Azadeh Moradinezhad
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (10):