Elaboration of a generalized approach to control and to synchronize the fractional-order chaotic systems

被引:5
作者
Soukkou, Ammar [1 ]
Leulmi, Salah [2 ]
机构
[1] Jijel Univ, Fac Sci & Technol, Dept Elect, Jijel, Algeria
[2] Univ August 20th, Dept Elect Power Engn, Fac Technol, Skikda Elect Power Syst Lab, Skikda, Algeria
关键词
Fractional-order controller; BIBO stability; small gain theorem; network controllers; fractional-order hyperchaotic systems; multiobjective optimization; PROJECTIVE SYNCHRONIZATION; DIFFERENTIAL-EQUATIONS; STABILITY ANALYSIS; STABILIZATION; ALGORITHM; DESIGN;
D O I
10.1080/03081079.2017.1324854
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a new general optimal structure and parameters of the fractional-order feedback control law (OSP-FoF) is developed for controlling and synchronizing a large class of fractional-order chaotic systems (FoCS). The design of the OSP-FoF model is based on bounded-input bounded-output stabilization arguments, small gain theorem (SGT), and the matrix norms. The proposed model is theoretically rigorous and represents a powerful and simple approach which provides a reasonable trade-off between computational overhead, storage space, numerical accuracy and stability analysis for control and synchronization purposes of FoCS. Simulation results for the stabilization and synchronization of fractional-order hyperchaotic systems demonstrate the effectiveness of this newly proposed approach.
引用
收藏
页码:853 / 878
页数:26
相关论文
共 41 条
[21]   Extended Chen: a new class of chaotic fractional-order systems [J].
Nasrollahi, A. ;
Bigdeli, N. .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2014, 43 (08) :880-896
[22]   Synchronization of fractional-order uncertain chaotic systems with input nonlinearity [J].
Noghredani, Naeimadeen ;
Balochian, Saeed .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2015, 44 (04) :485-498
[23]   The variable, fractional-order discrete-time PD controller in the IISv1.3 robot arm control [J].
Ostalczyk, Piotr ;
Brzezinski, Dariusz W. ;
Duch, Piotr ;
Laski, Maciej ;
Sankowski, Dominik .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06) :750-759
[24]  
Oustaloup A., 1991, La Commande CRONE: Commande Robuste dOrdre Non Entier
[25]  
Oustaloup A., 1991, DERIVATION NONENTIER
[26]  
Petras I, 2011, NONLINEAR PHYS SCI, P1
[27]   Fractional-order systems and PI-λ-D-μ-controllers [J].
Podlubny, I .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (01) :208-214
[28]   Control and switching synchronization of fractional order chaotic systems using active control technique [J].
Radwan, A. G. ;
Moaddy, K. ;
Salama, K. N. ;
Momani, S. ;
Hashim, I. .
JOURNAL OF ADVANCED RESEARCH, 2014, 5 (01) :125-132
[29]   On the control of chaos via fractional delayed feedback method [J].
Sadeghian, Hoda ;
Salarieh, Hassan ;
Alasty, Aria ;
Meghdari, Ali .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1482-1491
[30]  
Sastry S., 1999, NONLINEAR SYSTEMS AN, DOI [10.1007/978-1-4757-3108-8, DOI 10.1007/978-1-4757-3108-8]