A Preliminary Study of Diversity in Extreme Learning Machines Ensembles

被引:0
|
作者
Perales-Gonzalez, Carlos [1 ]
Carbonero-Ruz, Mariano [1 ]
Becerra-Alonso, David [1 ]
Fernandez-Navarro, Francisco [1 ]
机构
[1] Univ Loyola Andalucia, Dept Quantitat Methods, Seville, Spain
关键词
Extreme learning machine; Diversity; Machine learning; Ensemble; AdaBoost; REGRESSION;
D O I
10.1007/978-3-319-92639-1_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the neural network version of Extreme Learning Machine (ELM) is used as a base learner for an ensemble meta algorithm which promotes diversity explicitly in the ELM loss function. The cost function proposed encourages orthogonality (scalar product) in the parameter space. Other ensemble-based meta-algorithms from AdaBoost family are used for comparison purposes. Both accuracy and diversity presented in our proposal are competitive, thus reinforcing the idea of introducing diversity explicitly.
引用
收藏
页码:302 / 314
页数:13
相关论文
共 50 条
  • [41] Extreme Learning Machines for spatial environmental data
    Leuenberger, Michael
    Kanevski, Mikhail
    COMPUTERS & GEOSCIENCES, 2015, 85 : 64 - 73
  • [42] Extreme learning machines: new trends and applications
    DENG ChenWei
    HUANG GuangBin
    XU Jia
    TANG JieXiong
    Science China(Information Sciences), 2015, 58 (02) : 5 - 20
  • [43] Potential and limitations of quantum extreme learning machines
    Innocenti, L.
    Lorenzo, S.
    Palmisano, I.
    Ferraro, A.
    Paternostro, M.
    Palma, G. M.
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [44] Convolutional Extreme Learning Machines: A Systematic Review
    Rodrigues, Iago Richard
    da Silva Neto, Sebastiao Rogerio
    Kelner, Judith
    Sadok, Djamel
    Endo, Patricia Takako
    INFORMATICS-BASEL, 2021, 8 (02):
  • [45] Batch Intrinsic Plasticity for Extreme Learning Machines
    Neumann, Klaus
    Steil, Jochen J.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 339 - 346
  • [46] Neuromemristive Extreme Learning Machines for Pattern Classification
    Merkel, Cory
    Kudithipudi, Dhireesha
    2014 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2014, : 77 - 82
  • [47] Object tracking with collaborative extreme learning machines
    Haipeng Kuang
    Liang Xun
    Multimedia Tools and Applications, 2020, 79 : 4965 - 4988
  • [48] Learning to Stabilize Extreme Neural Machines with Metaplasticity
    Boucher-Routhier, Megan
    Pilzak, Artem
    Charbonneau, Annie Theberge
    Thivierge, Jean-Philippe
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [49] DISULFIDE CONNECTIVITY PREDICTION WITH EXTREME LEARNING MACHINES
    Alhamdoosh, Monther
    Savojardo, Castrense
    Fariselli, Piero
    Casadio, Rita
    BIOINFORMATICS 2011, 2011, : 5 - 14
  • [50] Poster: Backdoor Attack on Extreme Learning Machines
    Tajalli, Behrad
    Abad, Gorka
    Picek, Stjepan
    PROCEEDINGS OF THE 2023 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2023, 2023, : 3588 - 3590