Solving inverse problems using Particle Swarm Optimization: An application to aircraft fuel measurement considering sensor failure

被引:2
作者
Hu, Kai [1 ]
Huang, Samuel H. [1 ]
机构
[1] Univ Cincinnati, Dept Mech Ind & Nucl Engn, Intelligent Syst Lab, Cincinnati, OH 45221 USA
关键词
inverse problem; Particle Swarm Optimization; neural networks; aircraft fuel measurement; missing data;
D O I
10.3233/IDA-2007-11407
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a robust modeling method to handle inverse problems with missing data. The modeling method is applied to aircraft fuel measurement considering sensor failure. Neural Networks that are tolerant to noisy data are adapted to approximate the nonlinear physical process. Unlike previous algorithms that use gradient information to search input space in inverse problems, the proposed method thoroughly explores the input space using particle swarm optimization. The comparison results show the effectiveness of our method in dealing with missing data.
引用
收藏
页码:421 / 434
页数:14
相关论文
共 25 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] [Anonymous], 2005, NEURAL NETWORKS PATT
  • [3] CHANG ATC, 1992, NORD HYDROL, V23, P173
  • [4] The particle swarm - Explosion, stability, and convergence in a multidimensional complex space
    Clerc, M
    Kennedy, J
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) : 58 - 73
  • [5] Clow B, 2004, IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, P582
  • [6] Solving inverse problems by Bayesian neural network iterative inversion with ground truth incorporation
    Davis, DT
    Hwang, JN
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (11) : 2749 - 2757
  • [7] RETRIEVAL OF SNOW PARAMETERS BY ITERATIVE INVERSION OF A NEURAL-NETWORK
    DAVIS, DT
    CHEN, ZX
    HWANG, JN
    CHANG, ATC
    TSANG, L
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (04): : 842 - 852
  • [8] Duckett T, 2001, IEEE INT CONF ROBOT, P4017, DOI 10.1109/ROBOT.2001.933245
  • [9] ENGELBRECHT A, 2006, P IEEE SWARM INTELLI
  • [10] TRAINING FEEDFORWARD NETWORKS WITH THE MARQUARDT ALGORITHM
    HAGAN, MT
    MENHAJ, MB
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (06): : 989 - 993