Discrete Lyapunov exponent and resistance to differential cryptanalysis

被引:18
作者
Amigo, Jose Maria [1 ]
Kocarev, Ljupco
Szczepanski, Janusz
机构
[1] Univ Miguel Hernandez, Ctr Invest Operat, Elche 03202, Spain
[2] Macedonian Acad Sci & Arts, Skopje 1000, Macedonia
[3] New York Univ Skopje, Skopje 1000, Macedonia
[4] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[5] Polish Acad Sci, Inst Fundamental Technol Res, PL-00049 Warsaw, Poland
关键词
differential cryptanalysis; discrete Lyapunov exponent (DLE); maximum differential probability (DP);
D O I
10.1109/TCSII.2007.901576
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In a recent paper, Jakimoski and Subbalakshmi provided a nice connection between the so-called discrete Lyapunov exponent of a permutation F defined on a finite lattice and its maximal differential probability, a parameter that measures the complexity of a differential cryptanalysis attack on the substitution defined by F. In this brief, we take a second look at their result to find some practical shortcomings. We also discuss more general aspects.
引用
收藏
页码:882 / 886
页数:5
相关论文
共 5 条
[1]   Theory and practice of chaotic cryptography [J].
Amigo, J. M. ;
Kocarev, L. ;
Szczepanski, J. .
PHYSICS LETTERS A, 2007, 366 (03) :211-216
[2]  
Ash R.B., 1990, ser. Dover books on advanced mathematics
[3]   Discrete Lyapunov exponent and differential cryptanalysis [J].
Jakimoski, G. ;
Subbalakshmi, K. P. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2007, 54 (06) :499-501
[4]   Finite-space Lyapunov exponents and pseudochaos [J].
Kocarev, L ;
Szczepanski, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[5]   Discrete chaos -: I:: Theory [J].
Kocarev, Ljupco ;
Szczepanski, Janusz ;
Amigo, Jose M. ;
Tomovski, Igor .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (06) :1300-1309