The Webster Scalar Curvature and Sharp Upper and Lower Bounds for the First Positive Eigenvalue of the Kohn-Laplacian on Real Hypersurfaces

被引:5
|
作者
Li, Song Ying [1 ,2 ]
Son, Duong Ngoc [3 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Fujian Normal Univ, Dept Math, Fuzhou 350108, Fujian, Peoples R China
[3] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
CR manifold; eigenvalue; Kohn-Laplacian; Webster curvature; PSEUDOCONVEX DOMAINS; INVARIANTS; OPERATOR;
D O I
10.1007/s10114-018-7415-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M,theta) be a compact strictly pseudoconvex pseudohermitian manifold which is CR embedded into a complex space. In an earlier paper, Lin and the authors gave several sharp upper bounds for the first positive eigenvalue lambda(1) of the Kohn-Laplacian a-(b) on (M,theta). In the present paper, we give a sharp upper bound for lambda(1), generalizing and extending some previous results. As a corollary, we obtain a Reilly-type estimate when M is embedded into the standard sphere. In another direction, using a Lichnerowicz-type estimate by Chanillo, Chiu, and Yang and an explicit formula for the Webster scalar curvature, we give a lower bound for lambda(1) when the pseudohermitian structure theta is volume-normalized.
引用
收藏
页码:1248 / 1258
页数:11
相关论文
共 13 条