A global solution curve for a class of periodic problems, including the pendulum equation

被引:9
作者
Korman, Philip [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2007年 / 58卷 / 05期
关键词
periodic solutions; the pendulum equation; exact multiplicity of solutions;
D O I
10.1007/s00033-006-6014-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using continuation methods and bifurcation theory, we study the exact multiplicity of periodic solutions, and the global solution structure, for a class of periodically forced pendulum-like equations. Our results apply also to the first order equations. We also show that by choosing a forcing term, one can produce periodic solutions with any number of Fourier coefficients arbitrarily prescribed.
引用
收藏
页码:749 / 766
页数:18
相关论文
共 10 条
[1]  
Castro A., 1980, P 8 FALL C OKL STAT, P149
[2]  
Cepicka J, 1997, J MATH ANAL APPL, V209, P712, DOI 10.1006/jmaa.1997.5380
[3]   Exact multiplicity for periodic solutions of Duffing type [J].
Chen, HB ;
Li, Y ;
Hou, XJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (1-2) :115-124
[4]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[5]  
DONATI F, 1993, CR ACAD SCI I-MATH, V317, P667
[6]   ON PERIODIC-SOLUTIONS OF FORCED PENDULUM-LIKE EQUATIONS [J].
FOURNIER, G ;
MAWHIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 60 (03) :381-395
[7]   Periodic solutions of the forced pendulum: Exchange of stability and bifurcations [J].
Katriel, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (01) :1-50
[8]  
Korman P, 2005, MATH RES LETT, V12, P933
[9]   EXACT MULTIPLICITY RESULTS FOR 2 CLASSES OF PERIODIC EQUATIONS [J].
KORMAN, P ;
OUYANG, T .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 194 (03) :763-779
[10]   ON THE NUMBER OF SOLUTIONS FOR THE FORCED PENDULUM EQUATION [J].
TARANTELLO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 80 (01) :79-93