Quantitative imaging of protein interactions in the cell nucleus

被引:69
作者
Voss, TC [1 ]
Demarco, IA [1 ]
Day, RN [1 ]
机构
[1] Univ Virginia Hlth Syst, Dept Med, Charlottesville, VA 22908 USA
关键词
D O I
10.2144/05383RV01
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Over the past decade, genetically encoded fluorescent proteins have become widely used as noninvasive markers in living cells. The development of fluorescent proteins, coupled with advances in digital imaging, has led to the rapid evolution of live-cell imaging methods. These approaches are being applied to address biological questions of the recruitment, co-localization, and interactions of specific proteins within particular subcellular compartments. In the wake of this rapid progress, however, come important issues associated with the acquisition and analysis of ever larger and more complex digital imaging data sets. Using protein localization in the mammalian cell nucleus as on example, we will re view some recent developments in the application of quantitative imaging to analyze subcellular distribution and co-localization of proteins in populations of living cells. In this report, we review the principles of acquiring fluorescence resonance energy transfer (FRET) microscopy measurements to define the spatial relationships between proteins. We then discuss how fluorescence lifetime imaging microscopy (FLIM) provides a method that is independent of intensity-based measurements to detect localized protein interactions with spatial resolution. Finally, we consider potential problems associated with the expression of proteins fused to fluorescent proteins for FRET-based measurements from living cells.
引用
收藏
页码:413 / 424
页数:12
相关论文
共 98 条
[1]   Context-dependent transcription: all politics is local [J].
Alvarez, M ;
Rhodes, SJ ;
Bidwell, JP .
GENE, 2003, 313 :43-57
[2]   To 5D and beyond: Quantitative fluorescence microscopy in the postgenomic era [J].
Andrews, PD ;
Harper, IS ;
Swedlow, JR .
TRAFFIC, 2002, 3 (01) :29-36
[3]   Expansion of the genetic code enables design of a novel "gold'' class of green fluorescent proteins [J].
Bae, JH ;
Rubini, M ;
Jung, G ;
Wiegand, G ;
Seifert, MHJ ;
Azim, MK ;
Kim, JS ;
Zumbusch, A ;
Holak, TA ;
Moroder, L ;
Huber, R ;
Budisa, N .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 328 (05) :1071-1081
[4]   Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell [J].
Bastiaens, PIH ;
Squire, A .
TRENDS IN CELL BIOLOGY, 1999, 9 (02) :48-52
[5]   Imaging the intracellular trafficking and state of the AB(5) quaternary structure of cholera toxin [J].
Bastiaens, PIH ;
Majoul, IV ;
Verveer, PJ ;
Soling, HD ;
Jovin, TM .
EMBO JOURNAL, 1996, 15 (16) :4246-4253
[6]   Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: Fluorescent-labeled protein kinase C beta I [J].
Bastiaens, PIH ;
Jovin, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8407-8412
[7]   FRET or no FRET: A quantitative comparison [J].
Berney, C ;
Danuser, G .
BIOPHYSICAL JOURNAL, 2003, 84 (06) :3992-4010
[8]   Automated analysis of patterns in fluorescence-microscope images [J].
Boland, MV ;
Murphy, RF .
TRENDS IN CELL BIOLOGY, 1999, 9 (05) :201-202
[9]   A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells [J].
Boland, MV ;
Murphy, RF .
BIOINFORMATICS, 2001, 17 (12) :1213-1223
[10]   A monomeric red fluorescent protein [J].
Campbell, RE ;
Tour, O ;
Palmer, AE ;
Steinbach, PA ;
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7877-7882