Whittaker Modules for Classical Lie Superalgebras

被引:15
作者
Chen, Chih-Whi [1 ]
机构
[1] Natl Cent Univ, Dept Math, Taoyuan, Taiwan
关键词
KAZHDAN-LUSZTIG CONJECTURE; REPRESENTATIONS; FUNCTORS; FINITE; ALGEBRAS; PRODUCTS; DUALITY;
D O I
10.1007/s00220-021-04159-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify simple Whittaker modules for classical Lie superalgebras in terms of their parabolic decompositions. We establish a type of Milicic-Soergel equivalence of a category of Whittaker modules and a category of Harish-Chandra bimodules. For classical Lie superalgebras of type I, we reduce the problem of composition factors of standard Whittaker modules to that of Verma modules in their BGG categories O. As a consequence, the composition series of standard Whittaker modules over the general linear Lie superalgebras gl(m|n) and the ortho-symplectic Lie superalgebras osp(2|2n) can be computed via the Kazhdan-Lusztig combinatorics.
引用
收藏
页码:351 / 383
页数:33
相关论文
共 73 条
[1]   Whittaker modules for the affine Lie algebra A1(1) [J].
Adamovic, Drazen ;
Lu, Rencai ;
Zhao, Kaiming .
ADVANCES IN MATHEMATICS, 2016, 289 :438-479
[2]  
Backelin E, 1997, INT MATH RES NOTICES, V1997, P153
[3]   WHITTAKER CATEGORIES AND WHITTAKER MODULES FOR LIE SUPERALGEBRAS [J].
Bagci, Irfan ;
Christodoulopoulou, Konstantina ;
Wiesner, Emilie .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (11) :4932-4947
[4]  
Bao H., 2018, ASTERISQUE, V402
[5]   KAZHDAN-LUSZTIG THEORY OF SUPER TYPE D AND QUANTUM SYMMETRIC PAIRS [J].
Bao, Huanchen .
REPRESENTATION THEORY, 2017, 21 :247-276
[6]   Blocks and modules for Whittaker pairs [J].
Batra, Punita ;
Mazorchuk, Volodymyr .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (07) :1552-1568
[7]  
BEILINSON A, 1981, CR ACAD SCI I-MATH, V292, P15
[8]   ON THE THEORY OF FROBENIUS EXTENSIONS AND ITS APPLICATION TO LIE-SUPERALGEBRAS [J].
BELL, AD ;
FARNSTEINER, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (01) :407-424
[9]  
Benkart G., 2009, REPRESENT THEOR, V13, P141
[10]  
Bernste I.N., 1975, P SUMM SCH BOL JAN M, P21