Setvalued Dynamical Systems for Stochastic Evolution Equations Driven by Fractional Noise

被引:7
作者
Garrido-Atienza, M. J. [1 ]
Schmalfuss, B. [2 ]
Valero, J. [3 ]
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Avda Reina Mercedes S-N, Seville 41012, Spain
[2] Friedrich Schiller Univ Jena, Inst Stochast, Ernst Abbe Pl 2, D-77043 Jena, Germany
[3] Univ Miguel Hernandez, Ctr Invest Operat, Avda Univ S-N, Elche 03202, Spain
关键词
Fractional Brownian motion; Fractional derivatives; Multivalued random dynamical systems; RANDOM ATTRACTORS; BROWNIAN-MOTION;
D O I
10.1007/s10884-019-09811-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Hilbert-valued evolution equations driven by Holder paths with Holder index greater than 1/2, which includes the case of fractional noises with Hurst parameters in (1/2,1). The assumptions of the drift term will not be enough to ensure the uniqueness of solutions. Nevertheless, adopting a multivalued setting, we will prove that the set of all solutions corresponding to the same initial condition generates a (multivalued) nonautonomous dynamical system phi is measurable (and hence a (multivalued) random dynamical system), we need to construct a new metric dynamical system that models the noise with the property that the set space is separable.
引用
收藏
页码:79 / 105
页数:27
相关论文
共 32 条
[1]  
Arnold L., 1998, Random dynamical systems, DOI DOI 10.1007/978-3-662-12878-7
[2]  
Bauer H., 1996, Probability Theory
[3]  
Caraballo T, 2008, DISCRETE CONT DYN-A, V21, P415
[4]   Global attractors for multivalued random dynamical systems [J].
Caraballo, T ;
Langa, JA ;
Valero, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (06) :805-829
[5]   Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise [J].
Caraballo, Tomas ;
Han, Xiaoying ;
Sehmalfuss, Bjoern ;
Valero, Jose .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 :255-278
[6]   ASYMPTOTIC BEHAVIOUR OF A STOCHASTIC SEMILINEAR DISSIPATIVE FUNCTIONAL EQUATION WITHOUT UNIQUENESS OF SOLUTIONS [J].
Caraballo, Tomas ;
Garrido-Atienza, Maria J. ;
Schmalfuss, Bjoern ;
Valero, Jose .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (02) :439-455
[7]   PATHWISE SOLUTIONS OF SPDES DRIVEN BY HOLDER-CONTINUOUS INTEGRATORS WITH EXPONENT LARGER THAN 1/2 AND RANDOM DYNAMICAL SYSTEMS [J].
Chen, Yong ;
Gao, Hongjun ;
Garrido-Atienza, Maria J. ;
Schmalfuss, Bjoern .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (01) :79-98
[8]  
Cornfeld I., 1982, ERGODIC THEORY
[9]   Exponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in (1/2,1) [J].
Duc, L. H. ;
Garrido-Atienza, M. J. ;
Neuenkirch, A. ;
Schmalfuss, B. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (02) :1119-1145
[10]  
Friz P., 2010, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications