Machine learning prediction of coordination energies for alkali group elements in battery electrolyte solvents

被引:47
作者
Ishikawa, Atsushi [1 ,2 ,3 ,4 ,5 ]
Sodeyama, Keitaro [1 ,4 ,5 ]
Igarashi, Yasuhiko [1 ,6 ]
Nakayama, Tomofumi [6 ]
Tateyama, Yoshitaka [2 ,3 ,4 ,6 ]
Okada, Masato [6 ]
机构
[1] Japan Sci & Technol Agcy JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3330012, Japan
[2] Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat GREEN, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat cMI2, Res & Serv Div Mat Data & Integrated Syst MaDIS, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[5] Kyoto Univ, Elements Strategy Initiat Catalysts & Batteries, Nishikyo Ku, 1-30 Goiyo Oham, Kyoto 6158245, Japan
[6] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
关键词
LITHIUM-ION TRANSFER; NONCOVALENT INTERACTIONS; THEORETICAL-ANALYSIS; DENSITY FUNCTIONALS; SODIUM; THERMOCHEMISTRY; IDENTIFICATION; INTERFACE; DISCOVERY; KINETICS;
D O I
10.1039/c9cp03679b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We combined a data science-driven method with quantum chemistry calculations, and applied it to the battery electrolyte problem. We performed quantum chemistry calculations on the coordination energy (E-coord) of five alkali metal ions (Li, Na, K, Rb, and Cs) to electrolyte solvent, which is intimately related to ion transfer at the electrolyte/electrode interface. Three regression methods, namely, multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with linear regression (ES-LiR), were employed to find the relationship between E-coord and descriptors. Descriptors include both ion and solvent properties, such as the radius of metal ions or the atomic charge of solvent molecules. Our results clearly indicate that the ionic radius and atomic charge of the oxygen atom that is connected to the metal ion are the most important descriptors. Good prediction accuracy for E-coord of 0.127 eV was obtained using ES-LiR, meaning that we can predict E-coord for any alkali ion without performing quantum chemistry calculations for ion-solvent pairs. Further improvement in the prediction accuracy was made by applying the exhaustive search with Gaussian process, which yields 0.016 eV for the prediction accuracy of E-coord.
引用
收藏
页码:26399 / 26405
页数:7
相关论文
共 31 条
  • [1] Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte - A key to enhancing the rate capability of lithium-ion batteries
    Abe, T
    Sagane, F
    Ohtsuka, M
    Iriyama, Y
    Ogumi, Z
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : A2151 - A2154
  • [2] Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes
    Ahmad, Zeeshan
    Xie, Tian
    Maheshwari, Chinmay
    Grossman, Jeffrey C.
    Viswanathan, Venkatasubramanian
    [J]. ACS CENTRAL SCIENCE, 2018, 4 (08) : 996 - 1006
  • [3] Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes
    Bhatt, Mahesh Datt
    O'Dwyer, Colm
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (07) : 4799 - 4844
  • [4] The Origin of the Reduced Reductive Stability of Ion-Solvent Complexes on Alkali and Alkaline Earth Metal Anodes
    Chen, Xiang
    Li, Hao-Ran
    Shen, Xin
    Zhang, Qiang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (51) : 16643 - 16647
  • [5] Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode
    Chen, Xiang
    Shen, Xin
    Li, Bo
    Peng, Hong-Jie
    Cheng, Xin-Bing
    Li, Bo-Quan
    Zhang, Xue-Qiang
    Huang, Jia-Qi
    Zhang, Qiang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (03) : 734 - 737
  • [6] Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening
    Cheng, Lei
    Assary, Rajeev S.
    Qu, Xiaohui
    Jain, Anubhav
    Ong, Shyue Ping
    Rajput, Nay Nidhi
    Persson, Kristin
    Curtiss, Larry A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (02): : 283 - 291
  • [7] Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]
  • [8] Potassium Secondary Batteries
    Eftekhari, Ali
    Jian, Zelang
    Ji, Xiulei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) : 4404 - 4419
  • [9] Frisch M. J., 2016, GAUSSIAN 16 REVISION
  • [10] High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives
    Halls, Mathew D.
    Tasaki, Ken
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (05) : 1472 - 1478