Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil

被引:45
|
作者
Xia, X. [1 ]
Mohseni, K. [1 ,2 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
关键词
aerodynamics; swimming; flying; vortex shedding; LEADING-EDGE VORTEX; HOVERING INSECT FLIGHT; FLAT-PLATE; KUTTA CONDITION; FLAPPING WINGS; SEPARATED FLOW; ROLL-UP; FORCE; MODEL; MOTION;
D O I
10.1017/jfm.2017.513
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modelling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical steady Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad hoc implementation, the unsteady Kutta condition, the conservation of circulation as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for several airfoil motions in steady and unsteady background flows.
引用
收藏
页码:439 / 478
页数:40
相关论文
共 50 条
  • [1] Simple marching-vortex model for two-dimensional unsteady aerodynamics
    DeLaurier, James
    Winfield, James
    Journal of Aircraft, 1990, 27 (04): : 376 - 378
  • [3] On vortex-sheet evolution beyond singularity formation
    Pullin, D. I.
    Shen, N.
    JOURNAL OF FLUID MECHANICS, 2023, 976
  • [4] Ground effect on the aerodynamics of a two-dimensional oscillating airfoil
    Lu, H.
    Lua, K. B.
    Lim, T. T.
    Yeo, K. S.
    EXPERIMENTS IN FLUIDS, 2014, 55 (07)
  • [5] Ground effect on the aerodynamics of a two-dimensional oscillating airfoil
    H. Lu
    K. B. Lua
    T. T. Lim
    K. S. Yeo
    Experiments in Fluids, 2014, 55
  • [6] NONLINEAR AERODYNAMICS OF A TWO-DIMENSIONAL MEMBRANE AIRFOIL WITH SEPARATION
    DEMATTEIS, G
    DESOCIO, L
    JOURNAL OF AIRCRAFT, 1986, 23 (11): : 831 - 836
  • [7] NONLINEAR AERODYNAMICS OF A TWO-DIMENSIONAL MEMBRANE AIRFOIL WITH SEPARATION.
    de Matteis, G.
    de Socio, L.
    1600, (23):
  • [8] Two-dimensional incompressible unsteady airfoil theory - An overview
    Peters, D. A.
    JOURNAL OF FLUIDS AND STRUCTURES, 2008, 24 (03) : 295 - 312
  • [9] AERODYNAMICS OF TWO-DIMENSIONAL BLADE-VORTEX INTERACTION
    SRINIVASAN, GR
    MCCROSKEY, WJ
    BAEDER, JD
    AIAA JOURNAL, 1986, 24 (10) : 1569 - 1576
  • [10] A Lagrangian analysis of a two-dimensional airfoil with vortex shedding
    Lipinski, Doug
    Cardwell, Blake
    Mohseni, Kamran
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (34)