Si/MgO composite anodes for Li-ion batteries

被引:16
作者
Chen Jingbo [1 ]
Zhao Hailei [1 ,2 ]
He Jianchao [1 ]
Wang Jing [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Beijing Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
关键词
lithium batteries; anode materials; magnesia; silicon; electrochemical properties; LITHIUM SECONDARY BATTERIES; ALLOY NEGATIVE ELECTRODES; SILICON; PERFORMANCE; CAPACITY; NANOWIRES; STORAGE;
D O I
10.1007/s12598-011-0218-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Si/MgO composite anode material was prepared by a simple magnesium reduction process using silicon oxide and magnesium as starting reactants. The feasibility of this process is discussed from the thermodynamic viewpoint. The resultant composite material is mainly composed of Si and MgO components. MgO, acting as a buffer layer, can accommodate the large volume change of active Si during the charge/discharge process, thus the cycling stability is improved. Electrochemical tests demonstrate that the first charge and discharge capacities of the synthesized Si/MgO composite anode are ca. 1380 and 1046 mAh.g(-1), respectively, with an initial coulomb efficiency of ca. 76%. The magnesium reduction process provides a novel idea for the synthesis of Si-based anode materials.
引用
收藏
页码:166 / 169
页数:4
相关论文
共 17 条
[1]   Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas [J].
Bao, Zhihao ;
Weatherspoon, Michael R. ;
Shian, Samuel ;
Cai, Ye ;
Graham, Phillip D. ;
Allan, Shawn M. ;
Ahmad, Gul ;
Dickerson, Matthew B. ;
Church, Benjamin C. ;
Kang, Zhitao ;
Abernathy, Harry W., III ;
Summers, Christopher J. ;
Liu, Meilin ;
Sandhage, Kenneth H. .
NATURE, 2007, 446 (7132) :172-175
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]  
Chase M., 1998, NIST-JANAF Thermochemical Tables, V1
[4]   Spherical Sn-Ni-C alloy anode material with submicro/micro complex particle structure for lithium secondary batteries [J].
Guo, Hong ;
Zhao, Hailei ;
Ha, Xidi .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (09) :2207-2211
[5]   Electrochemical studies of the Si-based composites with large capacity and good cycling stability as anode materials for rechargeable lithium ion batteries [J].
Hanai, K ;
Liu, Y ;
Imanishi, N ;
Hirano, A ;
Matsumura, M ;
Ichikawa, T ;
Takeda, Y .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :156-160
[6]   Lithium alloy negative electrodes [J].
Huggins, RA .
JOURNAL OF POWER SOURCES, 1999, 81 :13-19
[7]   Lithium alloy negative electrodes formed from convertible oxides [J].
Huggins, RA .
SOLID STATE IONICS, 1998, 113 :57-67
[8]   The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries [J].
Kim, H ;
Choi, J ;
Sohn, HJ ;
Kang, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (12) :4401-4405
[9]   Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material [J].
Kim, Hyesun ;
Cho, Jaephil .
NANO LETTERS, 2008, 8 (11) :3688-3691
[10]   Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries [J].
Kim, Hyunjung ;
Han, Byunghee ;
Choo, Jaebum ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (52) :10151-10154