Entanglement-Assisted Quantum Codes From Algebraic Geometry Codes

被引:18
作者
Pereira, Francisco Revson F. [1 ,2 ]
Pellikaan, Ruud [2 ]
La Guardia, Giuliano Gadioli [3 ]
de Assis, Francisco Marcos [1 ]
机构
[1] Fed Univ Campina Grande UFCG, Dept Elect Engn, BR-58428830 Campina Grande, Paraiba, Brazil
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5612 AZ Eindhoven, Netherlands
[3] State Univ Ponta Grossa UEPG, Dept Math & Stat, BR-84010330 Ponta Grossa, Parana, Brazil
关键词
Codes; Quantum entanglement; Geometry; Liquid crystal displays; Error correction codes; Linear codes; Quantum computing; Quantum codes; algebraic geometry codes; maximal distance separable; maximal entanglement; asymptotically good; GOPPA CODES; MDS CODES; CURVES;
D O I
10.1109/TIT.2021.3113367
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum error-correcting codes play the role of suppressing noise and decoherence in quantum systems by introducing redundancy. Some strategies can be used to improve the parameters of these codes. For example, entanglement can provide a way for quantum error-correcting codes to achieve higher rates than the one obtained by means of the traditional stabilizer formalism. Such codes are called entanglement-assisted quantum error-correcting (EAQEC) codes. In this paper, we utilize algebraic geometry codes to construct several families of EAQEC codes derived from the Euclidean and the Hermitian construction. Three families constructed here consist of codes whose quantum Singleton defect is equal to zero, one, or two. We also construct families of EAQEC codes with an encoding rate exceeding the quantum Gilbert-Varshamov bound. Additionally, asymptotically good towers of linear complementary dual codes are used to obtain asymptotically good families of EAQEC codes consuming maximal entanglement. Furthermore, a simple comparison with the quantum Gilbert-Varshamov bound demonstrates that, by utilizing the proposed construction, it is possible to generate an asymptotically family of EAQEC codes that exceeds this bound.
引用
收藏
页码:7110 / 7120
页数:11
相关论文
共 38 条
[1]  
[Anonymous], 2004, ARXIVQUANTPH0406168
[2]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[3]   Entanglement required in achieving entanglement-assisted channel capacities [J].
Bowen, G .
PHYSICAL REVIEW A, 2002, 66 (05) :8
[4]   Correcting quantum errors with entanglement [J].
Brun, Todd ;
Devetak, Igor ;
Hsieh, Min-Hsiu .
SCIENCE, 2006, 314 (5798) :436-439
[5]   Catalytic Quantum Error Correction [J].
Brun, Todd A. ;
Devetak, Igor ;
Hsieh, Min-Hsiu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) :3073-3089
[6]   Linear Codes Over Fq Are Equivalent to LCD Codes for q > 3 [J].
Carlet, Claude ;
Mesnager, Sihem ;
Tang, Chunming ;
Qi, Yanfeng ;
Pellikaan, Ruud .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) :3010-3017
[7]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[8]   Entanglement-assisted quantum MDS codes constructed from negacyclic codes [J].
Chen, Jianzhang ;
Huang, Yuanyuan ;
Feng, Chunhui ;
Chen, Riqing .
QUANTUM INFORMATION PROCESSING, 2017, 16 (12)
[9]   Entanglement-assisted quantum MDS codes constructed from constacyclic codes [J].
Chen, Xiaojing ;
Zhu, Shixin ;
Kai, Xiaoshan .
QUANTUM INFORMATION PROCESSING, 2018, 17 (10)
[10]   A resource framework for quantum Shannon theory [J].
Devetak, Igor ;
Harrow, Aram W. ;
Winter, Andreas J. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (10) :4587-4618