Integrals of motion in the many-body localized phase

被引:387
|
作者
Ros, V. [1 ,2 ]
Mueller, M. [3 ]
Scardicchio, A. [2 ,4 ,5 ,6 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34151 Trieste, Italy
[3] Abdus Snlam ICTP, I-34151 Trieste, Italy
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Columbia Univ, Dept Phys, New York, NY 10027 USA
[6] CUNY, Grad Coll, ITS, New York, NY 10016 USA
关键词
SYSTEM; TRANSITION; ERGODICITY;
D O I
10.1016/j.nuclphysb.2014.12.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0, 1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization-delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:420 / 465
页数:46
相关论文
共 50 条
  • [41] Periodically driving a many-body localized quantum system
    Bordia P.
    Lüschen H.
    Schneider U.
    Knap M.
    Bloch I.
    Nature Physics, 2017, 13 (5) : 460 - 464
  • [42] Dynamics of quantum information in many-body localized systems
    Banuls, M. C.
    Yao, N. Y.
    Choi, S.
    Lukin, M. D.
    Cirac, J. I.
    PHYSICAL REVIEW B, 2017, 96 (17)
  • [43] Signatures of the many-body localized regime in two dimensions
    Thorsten B. Wahl
    Arijeet Pal
    Steven H. Simon
    Nature Physics, 2019, 15 : 164 - 169
  • [44] Drude weight fluctuations in many-body localized systems
    Filippone, Michele
    Brouwer, Piet W.
    Eisert, Jens
    von Oppen, Felix
    PHYSICAL REVIEW B, 2016, 94 (20)
  • [45] Dynamics and asymptotics of correlations in a many-body localized system
    Campbell, Steve
    Power, Matthew J. M.
    De Chiara, Gabriele
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (08):
  • [46] Persistence of correlations in many-body localized spin chains
    Vadimov, Vasilii
    Ala-Nissila, Tapio
    Mottonen, Mikko
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [47] Role of interactions in a dissipative many-body localized system
    Everest, Benjamin
    Lesanovsky, Igor
    Garrahan, Juan P.
    Levi, Emanuele
    PHYSICAL REVIEW B, 2017, 95 (02)
  • [48] Chiral Floquet Phases of Many-Body Localized Bosons
    Po, Hoi Chun
    Fidkowski, Lukasz
    Morimoto, Takahiro
    Potter, Andrew C.
    Vishwanath, Ashvin
    PHYSICAL REVIEW X, 2016, 6 (04):
  • [49] Slow delocalization of particles in many-body localized phases
    Kiefer-Emmanouilidis, Maximilian
    Unanyan, Razmik
    Fleischhauer, Michael
    Sirker, Jesko
    PHYSICAL REVIEW B, 2021, 103 (02)
  • [50] Bounding the resources for thermalizing many-body localized systems
    Sparaciari, Carlo
    Goihl, Marcel
    Boes, Paul
    Eisert, Jens
    Nelly Huei Ying Ng
    COMMUNICATIONS PHYSICS, 2021, 4 (01)