Integrals of motion in the many-body localized phase

被引:389
作者
Ros, V. [1 ,2 ]
Mueller, M. [3 ]
Scardicchio, A. [2 ,4 ,5 ,6 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34151 Trieste, Italy
[3] Abdus Snlam ICTP, I-34151 Trieste, Italy
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Columbia Univ, Dept Phys, New York, NY 10027 USA
[6] CUNY, Grad Coll, ITS, New York, NY 10016 USA
关键词
SYSTEM; TRANSITION; ERGODICITY;
D O I
10.1016/j.nuclphysb.2014.12.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0, 1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization-delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:420 / 465
页数:46
相关论文
共 50 条
  • [31] Many-body effect of mesoscopic localized states in MoS2 monolayer
    Yu, Yang
    Dang, Jianchen
    Qian, Chenjiang
    Sun, Sibai
    Peng, Kai
    Xie, Xin
    Wu, Shiyao
    Song, Feilong
    Yang, Jingnan
    Xiao, Shan
    Yang, Longlong
    Wang, Yunuan
    Shan, Xinyan
    Rafiq, M. A.
    Li, Bei-Bei
    Xu, Xiulai
    PHYSICAL REVIEW MATERIALS, 2019, 3 (05)
  • [32] Obtaining Highly Excited Eigenstates of Many-Body Localized Hamiltonians by the Density Matrix Renormalization Group Approach
    Khemani, Vedika
    Pollmann, Frank
    Sondhi, S. L.
    PHYSICAL REVIEW LETTERS, 2016, 116 (24)
  • [33] Geometric Phase Contribution to Quantum Nonequilibrium Many-Body Dynamics
    Tomka, Michael
    Polkovnikov, Anatoli
    Gritsev, Vladimir
    PHYSICAL REVIEW LETTERS, 2012, 108 (08)
  • [34] Multiscale entanglement clusters at the many-body localization phase transition
    Herviou, Loic
    Bera, Soumya
    Bardarson, Jens H.
    PHYSICAL REVIEW B, 2019, 99 (13)
  • [35] Delocalized glassy dynamics and many-body localization
    Biroli, G.
    Tarzia, M.
    PHYSICAL REVIEW B, 2017, 96 (20)
  • [36] Many-Body Localization for Randomly Interacting Bosons
    Sierant, P.
    Delande, D.
    Zakrzewski, J.
    ACTA PHYSICA POLONICA A, 2017, 132 (06) : 1707 - 1712
  • [37] Single spin probe of many-body localization
    van Nieuwenburg, Evert P. L.
    Huber, Sebastian D.
    Chitra, R.
    PHYSICAL REVIEW B, 2016, 94 (18)
  • [38] Discrete disorder models for many-body localization
    Janarek, Jakub
    Delande, Dominique
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2018, 97 (15)
  • [39] Dynamical stability of a many-body Kapitza pendulum
    Citro, Roberta
    Dalla Torre, Emanuele G.
    D'Alessio, Luca
    Polkovnikov, Anatoli
    Babadi, Mehrtash
    Oka, Takashi
    Demler, Eugene
    ANNALS OF PHYSICS, 2015, 360 : 694 - 710
  • [40] Many-body flatband localization
    Danieli, Carlo
    Andreanov, Alexei
    Flach, Sergej
    PHYSICAL REVIEW B, 2020, 102 (04)