Integrals of motion in the many-body localized phase

被引:387
|
作者
Ros, V. [1 ,2 ]
Mueller, M. [3 ]
Scardicchio, A. [2 ,4 ,5 ,6 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34151 Trieste, Italy
[3] Abdus Snlam ICTP, I-34151 Trieste, Italy
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Columbia Univ, Dept Phys, New York, NY 10027 USA
[6] CUNY, Grad Coll, ITS, New York, NY 10016 USA
关键词
SYSTEM; TRANSITION; ERGODICITY;
D O I
10.1016/j.nuclphysb.2014.12.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0, 1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization-delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:420 / 465
页数:46
相关论文
共 50 条
  • [21] Can Translation Invariant Systems Exhibit a Many-Body Localized Phase?
    De Roeck, Wojciech
    Huveneers, Francois
    FROM PARTICLE SYSTEMS TO PARTIAL DIFFERENTIAL EQUATIONS II, 2015, 129 : 173 - 192
  • [22] Resonant energy scales and local observables in the many-body localized phase
    Garratt, Samuel J.
    Roy, Sthitadhi
    PHYSICAL REVIEW B, 2022, 106 (05)
  • [23] Local resonances and parametric level dynamics in the many-body localized phase
    Garratt, S. J.
    Roy, Sthitadhi
    Chalker, J. T.
    PHYSICAL REVIEW B, 2021, 104 (18)
  • [24] Many-body localized phase of bosonic dipoles in a tilted optical lattice
    Dutta, Anirban
    Mukerjee, Subroto
    Sengupta, K.
    PHYSICAL REVIEW B, 2018, 98 (14)
  • [25] Comparing many-body localization lengths via nonperturbative construction of local integrals of motion
    Peng, Pai
    Li, Zeyang
    Yan, Haoxiong
    Wei, Ken Xuan
    Cappellaro, Paola
    PHYSICAL REVIEW B, 2019, 100 (21)
  • [26] Local integrals of motion and the stability of many-body localization in Wannier-Stark potentials
    Bertoni, C.
    Eisert, J.
    Kshetrimayum, A.
    Nietner, A.
    Thomson, S. J.
    PHYSICAL REVIEW B, 2024, 109 (02)
  • [27] Transport in Stark many-body localized systems
    Zisling, Guy
    Kennes, Dante M.
    Bar Lev, Yevgeny
    PHYSICAL REVIEW B, 2022, 105 (14)
  • [28] Phenomenology of the Prethermal Many-Body Localized Regime
    Long, David M.
    Crowley, Philip J. D.
    Khemani, Vedika
    Chandran, Anushya
    PHYSICAL REVIEW LETTERS, 2023, 131 (10)
  • [29] Many-body localized hidden generative models
    Zhong, Weishun
    Gao, Xun
    Yelin, Susanne F.
    Najafi, Khadijeh
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [30] Loschmidt echo in many-body localized phases
    Serbyn, Maksym
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2017, 96 (01)