Integrals of motion in the many-body localized phase

被引:389
作者
Ros, V. [1 ,2 ]
Mueller, M. [3 ]
Scardicchio, A. [2 ,4 ,5 ,6 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34151 Trieste, Italy
[3] Abdus Snlam ICTP, I-34151 Trieste, Italy
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Columbia Univ, Dept Phys, New York, NY 10027 USA
[6] CUNY, Grad Coll, ITS, New York, NY 10016 USA
关键词
SYSTEM; TRANSITION; ERGODICITY;
D O I
10.1016/j.nuclphysb.2014.12.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0, 1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization-delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:420 / 465
页数:46
相关论文
共 50 条
  • [11] Many-body localization as a large family of localized ground states
    Dupont, Maxime
    Laflorencie, Nicolas
    PHYSICAL REVIEW B, 2019, 99 (02)
  • [12] Periodically driven ergodic and many-body localized quantum systems
    Ponte, Pedro
    Chandran, Anushya
    Papic, Z.
    Abanin, Dmitry A.
    ANNALS OF PHYSICS, 2015, 353 : 196 - 204
  • [13] Efficient variational diagonalization of fully many-body localized Hamiltonians
    Pollmann, Frank
    Khemani, Vedika
    Cirac, J. Ignacio
    Sondhi, S. L.
    PHYSICAL REVIEW B, 2016, 94 (04)
  • [14] Dynamics in many-body localized quantum systems without disorder
    Schiulaz, Mauro
    Silva, Alessandro
    Mueller, Markus
    PHYSICAL REVIEW B, 2015, 91 (18):
  • [15] Power-Law Entanglement Spectrum in Many-Body Localized Phases
    Serbyn, Maksym
    Michailidis, Alexios A.
    Abanin, Dmitry A.
    Papic, Z.
    PHYSICAL REVIEW LETTERS, 2016, 117 (16)
  • [16] Typicality approach to the optical conductivity in thermal and many-body localized phases
    Steinigeweg, Robin
    Herbrych, Jacek
    Pollmann, Frank
    Brenig, Wolfram
    PHYSICAL REVIEW B, 2016, 94 (18)
  • [17] Time evolution of many-body localized systems with the flow equation approach
    Thomson, S. J.
    Schiro, M.
    PHYSICAL REVIEW B, 2018, 97 (06)
  • [18] Spectral Lyapunov exponents in chaotic and localized many-body quantum systems
    Chan, Amos
    De Luca, Andrea
    Chalker, J. T.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [19] Universal dynamics of density correlations at the transition to the many-body localized state
    Mierzejewski, M.
    Herbrych, J.
    Prelovsek, P.
    PHYSICAL REVIEW B, 2016, 94 (22)
  • [20] Distinctive response of many-body localized systems to a strong electric field
    Kozarzewski, Maciej
    Prelovsek, Peter
    Mierzejewski, Marcin
    PHYSICAL REVIEW B, 2016, 93 (23)