Integrals of motion in the many-body localized phase

被引:387
|
作者
Ros, V. [1 ,2 ]
Mueller, M. [3 ]
Scardicchio, A. [2 ,4 ,5 ,6 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34151 Trieste, Italy
[3] Abdus Snlam ICTP, I-34151 Trieste, Italy
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Columbia Univ, Dept Phys, New York, NY 10027 USA
[6] CUNY, Grad Coll, ITS, New York, NY 10016 USA
关键词
SYSTEM; TRANSITION; ERGODICITY;
D O I
10.1016/j.nuclphysb.2014.12.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0, 1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization-delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:420 / 465
页数:46
相关论文
共 50 条
  • [11] On the Quadratization of the Integrals for the Many-Body Problem
    Ying, Yu
    Baddour, Ali
    Gerdt, Vladimir P.
    Malykh, Mikhail
    Sevastianov, Leonid
    MATHEMATICS, 2021, 9 (24)
  • [12] Multibody expansion of the local integrals of motion: how many pairs of particle-hole do we really need to describe the quasiparticles in the many-body localized phase?
    Gholami, Zahra
    Amini, Mohsen
    Soltani, Morteza
    Ghanbari-Adivi, Ebrahim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (15)
  • [13] The many-body localized phase of the quantum random energy model
    Baldwin, C. L.
    Laumann, C. R.
    Pal, A.
    Scardicchio, A.
    PHYSICAL REVIEW B, 2016, 93 (02):
  • [14] Direct measurement of nonlocal interactions in the many-body localized phase
    Chiaro, B.
    Neill, C.
    Bohrdt, A.
    Filippone, M.
    Arute, F.
    Arya, K.
    Babbush, R.
    Bacon, D.
    Bardin, J.
    Barends, R.
    Boixo, S.
    Buell, D.
    Burkett, B.
    Chen, Y.
    Chen, Z.
    Collins, R.
    Dunsworth, A.
    Farhi, E.
    Fowler, A.
    Foxen, B.
    Gidney, C.
    Giustina, M.
    Harrigan, M.
    Huang, T.
    Isakov, S.
    Jeffrey, E.
    Jiang, Z.
    Kafri, D.
    Kechedzhi, K.
    Kelly, J.
    Klimov, P.
    Korotkov, A.
    Kostritsa, F.
    Landhuis, D.
    Lucero, E.
    McClean, J.
    Mi, X.
    Megrant, A.
    Mohseni, M.
    Mutus, J.
    McEwen, M.
    Naaman, O.
    Neeley, M.
    Niu, M.
    Petukhov, A.
    Quintana, C.
    Rubin, N.
    Sank, D.
    Satzinger, K.
    White, T.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [15] Absence of slow particle transport in the many-body localized phase
    Luitz, David J.
    Bar Lev, Yevgeny
    PHYSICAL REVIEW B, 2020, 102 (10)
  • [16] Length scales in the many-body localized phase and their spectral signatures
    Varma, V. K.
    Raj, A.
    Gopalakrishnan, S.
    Oganesyan, V
    Pekker, D.
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [17] ON A METHOD TO COMPUTE SOME MANY-BODY PHASE-SPACE INTEGRALS
    PRORIOL, J
    NUCLEAR PHYSICS A, 1969, A126 (03) : 689 - &
  • [18] Many-body localized quantum batteries
    Rossini, Davide
    Andolina, Gian Marcello
    Polini, Marco
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [19] RADIAL INTEGRALS FOR ATOMIC MANY-BODY PROBLEM
    ROBERTS, PJ
    JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (07): : 2954 - &
  • [20] Construction of exact constants of motion and effective models for many-body localized systems
    Goihl, M.
    Gluza, M.
    Krumnow, C.
    Eisert, J.
    PHYSICAL REVIEW B, 2018, 97 (13)