Integrals of motion in the many-body localized phase

被引:387
|
作者
Ros, V. [1 ,2 ]
Mueller, M. [3 ]
Scardicchio, A. [2 ,4 ,5 ,6 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34151 Trieste, Italy
[3] Abdus Snlam ICTP, I-34151 Trieste, Italy
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Columbia Univ, Dept Phys, New York, NY 10027 USA
[6] CUNY, Grad Coll, ITS, New York, NY 10016 USA
关键词
SYSTEM; TRANSITION; ERGODICITY;
D O I
10.1016/j.nuclphysb.2014.12.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0, 1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization-delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:420 / 465
页数:46
相关论文
共 50 条
  • [1] Constructing local integrals of motion in the many-body localized phase
    Chandran, Anushya
    Kim, Isaac H.
    Vidal, Guifre
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2015, 91 (08)
  • [2] Local integrals of motion in many-body localized systems
    Imbrie, John Z.
    Ros, Valentina
    Scardicchio, Antonello
    ANNALEN DER PHYSIK, 2017, 529 (07)
  • [3] Explicit Local Integrals of Motion for the Many-Body Localized State
    Rademaker, Louk
    Ortuno, Miguel
    PHYSICAL REVIEW LETTERS, 2016, 116 (01)
  • [4] Local integrals of motion in quasiperiodic many-body localized systems
    Thomson, Steven J.
    Schiro, Marco
    SCIPOST PHYSICS, 2023, 14 (05):
  • [5] Integrals of motion in the many-body localized phase (vol 891, pg 420, 2015)
    Ros, V.
    Mueller, M.
    Scardicchio, A.
    NUCLEAR PHYSICS B, 2015, 900 : 446 - 448
  • [6] Local integrals of motion for topologically ordered many-body localized systems
    Wahl, Thorsten B.
    Beri, Benjamin
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [7] Many-body localization from the perspective of Integrals of Motion
    Rademaker, Louk
    Ortuno, Miguel
    Somoza, Andres M.
    ANNALEN DER PHYSIK, 2017, 529 (07)
  • [8] Quantum quenches in the many-body localized phase
    Serbyn, Maksym
    Papic, Z.
    Abanin, D. A.
    PHYSICAL REVIEW B, 2014, 90 (17):
  • [9] Local integrals of motion and the quasiperiodic many-body localization transition
    Singh, Hansveer
    Ware, Brayden
    Vasseur, Romain
    Gopalakrishnan, Sarang
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [10] Avalanches and many-body resonances in many-body localized systems
    Morningstar, Alan
    Colmenarez, Luis
    Khemani, Vedika
    Luitz, David J.
    Huse, David A.
    PHYSICAL REVIEW B, 2022, 105 (17)