Integrals of motion in the many-body localized phase

被引:389
|
作者
Ros, V. [1 ,2 ]
Mueller, M. [3 ]
Scardicchio, A. [2 ,4 ,5 ,6 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34151 Trieste, Italy
[3] Abdus Snlam ICTP, I-34151 Trieste, Italy
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Columbia Univ, Dept Phys, New York, NY 10027 USA
[6] CUNY, Grad Coll, ITS, New York, NY 10016 USA
关键词
SYSTEM; TRANSITION; ERGODICITY;
D O I
10.1016/j.nuclphysb.2014.12.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0, 1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization-delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:420 / 465
页数:46
相关论文
共 50 条
  • [1] Local integrals of motion in many-body localized systems
    Imbrie, John Z.
    Ros, Valentina
    Scardicchio, Antonello
    ANNALEN DER PHYSIK, 2017, 529 (07)
  • [2] Effective thermalization of a many-body dynamically localized Bose gas
    Vuatelet, Vincent
    Rancon, Adam
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [3] Accessing Many-Body Localized States through the Generalized Gibbs Ensemble
    Inglis, Stephen
    Pollet, Lode
    PHYSICAL REVIEW LETTERS, 2016, 117 (12)
  • [4] Mean-field theory of nearly many-body localized metals
    Gopalakrishnan, Sarang
    Nandkishore, Rahul
    PHYSICAL REVIEW B, 2014, 90 (22):
  • [5] Quantum coherence in ergodic and many-body localized systems
    Dhara, Sayandip
    Hamma, Alioscia
    Mucciolo, Eduardo R.
    PHYSICAL REVIEW B, 2020, 102 (04)
  • [6] Many-body localization phase transition
    Pal, Arijeet
    Huse, David A.
    PHYSICAL REVIEW B, 2010, 82 (17):
  • [7] Dynamics of quantum coherence in many-body localized systems
    Chen, Jin-Jun
    Xu, Kai
    Ren, Li-Hang
    Zhang, Yu-Ran
    Fan, Heng
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [8] Spatiotemporal heterogeneity of entanglement in many-body localized systems
    Artiaco, Claudia
    Balducci, Federico
    Heyl, Markus
    Russomanno, Angelo
    Scardicchio, Antonello
    PHYSICAL REVIEW B, 2022, 105 (18)
  • [9] Dynamics and asymptotics of correlations in a many-body localized system
    Campbell, Steve
    Power, Matthew J. M.
    De Chiara, Gabriele
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (08)
  • [10] Thermal inclusions: how one spin can destroy a many-body localized phase
    Ponte, Pedro
    Laumann, C. R.
    Huse, David A.
    Chandran, A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2108):