Nonparametric Density Estimation Using Copula Transform, Bayesian Sequential Partitioning, and Diffusion-Based Kernel Estimator

被引:25
作者
Majdara, Aref [1 ]
Nooshabadi, Saeid [1 ,2 ]
机构
[1] Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Dept Comp Sci, Houghton, MI 49931 USA
关键词
Estimation; Kernel; Bandwidth; Histograms; Transforms; Bayes methods; Diffusion processes; Multivariate density estimation; non-parametric; high-dimensional; Bayesian sequential partitioning; copula transform; linear diffusion; BANDWIDTH SELECTION;
D O I
10.1109/TKDE.2019.2930052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-parametric density estimation methods are more flexible than parametric methods, due to the fact that they do not assume any specific shape or structure for the data. Most non-parametric methods, like Kernel estimation, require tuning of parameters to achieve good data smoothing, a non-trivial task, even in low dimensions. In higher dimensions, sparsity of data in local neighborhoods becomes a challenge even for non-parametric methods. In this paper, we use the copula transform and two efficient non-parametric methods to develop a new method for improved non-parametric density estimation in multivariate domain. After separation of marginal and joint densities using copula transform, a diffusion-based kernel estimator is employed to estimate the marginals. Next, Bayesian sequential partitioning (BSP) is used in the joint density estimation.
引用
收藏
页码:821 / 826
页数:6
相关论文
共 22 条
[1]  
[Anonymous], 2001, Encyclopedia of Mathematics
[2]  
[Anonymous], 2001, Monte Carlo strategies in scientific computing
[3]  
[Anonymous], P IEEE INT S CIRC SY
[4]  
Bayestehtashk A, 2013, INT CONF ACOUST SPEE, P5750, DOI 10.1109/ICASSP.2013.6638766
[5]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[6]   KERNEL DENSITY ESTIMATION VIA DIFFUSION [J].
Botev, Z. I. ;
Grotowski, J. F. ;
Kroese, D. P. .
ANNALS OF STATISTICS, 2010, 38 (05) :2916-2957
[7]   Transformation-based nonparametric estimation of multivariate densities [J].
Chang, Meng-Shiuh ;
Wu, Ximing .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 135 :71-88
[8]  
Devroye L, 1997, TEST-SPAIN, V6, P223
[9]  
Eggermont P.P.B., 2001, Springer Series in Statistics, V1
[10]  
Izenman A.J., 2003, Modern Multivariate Statistical techniques: Regression, Classification, and Manifold Learning