Water proton MR properties of human blood at 1.5 Tesla:: Magnetic susceptibility, T1, T2, T2* and non-Lorentzian signal behavior

被引:395
作者
Spees, WM
Yablonskiy, DA
Oswood, MC
Ackerman, JJH
机构
[1] Washington Univ, Mallinckrodt Inst Radiol, Dept Radiol, St Louis, MO 63110 USA
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[3] Washington Univ, Dept Internal Med, St Louis, MO USA
[4] Washington Univ, Dept Chem, St Louis, MO 63130 USA
关键词
BOLD effect; functional MRI; blood; magnetic susceptibility; relaxation;
D O I
10.1002/mrm.1072
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Accurate knowledge of the magnetic properties of human blood is required for the precise modeling of functional and vascular flow-related MRI, Herein are reported determinations of the relaxation parameters of blood, employing in vitro samples that are well representative of human blood in situ. The envelope of the blood (H2O)-H-1 free-induction decay signal magnitude during the first 100 msec following a spin echo at time TE is well-described empirically by an expression of the form, S(t) = S-o. exp{-R-2*. (t - TE) - AR* (t - TE)(2)}. The relaxation parameters AR* and R-2* increase as a function of the square of the susceptibility difference between red blood cell and plasma and depend on the spin-echo time. The Gaussian component, AR*, should be recognized in accurate modeling of MRI phenomena that depend upon the magnetic state of blood. The magnetic susceptibility difference between fully deoxygenated and fully oxygenated red blood cells at 37 degreesC is 0.27 ppm, as determined independently by MR and superconducting quantum interference device (SQUID) measurements. This value agrees well with the 1936 report of Pauling and Coryell (Proc Natl Acad Sci USA 1936;22:210-216), but is substantially larger than that frequently used in MRI literature. Magn Reson Med 45:533-542, 2001, (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:533 / 542
页数:10
相关论文
共 44 条
[1]  
Barth M, 1997, CELL MOL BIOL, V43, P783
[2]  
Bretthorst G. L., 1988, Bayesian Spectrum Analysis and Parameter Estimation
[3]   MAGNETIC-RESONANCE-IMAGING OF STATIONARY BLOOD - A REVIEW [J].
BROOKS, RA ;
DICHIRO, G .
MEDICAL PHYSICS, 1987, 14 (06) :903-913
[4]   MAGNETIC-RELAXATION IN BLOOD AND BLOOD-CLOTS [J].
BRYANT, RG ;
MARILL, K ;
BLACKMORE, C ;
FRANCIS, C .
MAGNETIC RESONANCE IN MEDICINE, 1990, 13 (01) :133-144
[5]  
Burtis C., 1999, TIETZ TXB CLIN CHEM
[6]  
Callaghan P.T., 1991, Principles of nuclear magnetic resonance microscopy, V1st
[7]  
Cerdonio M, 1981, Methods Enzymol, V76, P354
[8]   ROOM-TEMPERATURE MAGNETIC-PROPERTIES OF OXYHEMOGLOBIN AND CARBONMONOXY-HEMOGLOBIN [J].
CERDONIO, M ;
CONGIUCASTELLANO, A ;
CALABRESE, L ;
MORANTE, S ;
PISPISA, B ;
VITALE, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (10) :4916-4919
[9]   REEXAMINATION OF THE EVIDENCE FOR PARAMAGNETISM IN OXYMONOXYHEMOGLOBINS AND CARBONMONOXYHEMOGLOBINS [J].
CERDONIO, M ;
MORANTE, S ;
TORRESANI, D ;
VITALE, S ;
DEYOUNG, A ;
NOBLE, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (01) :102-103
[10]   MR GRADIENT-ECHO IMAGING OF INTRAVASCULAR BLOOD OXYGENATION - T-2(ASTERISK) DETERMINATION IN THE PRESENCE OF FLOW [J].
CHIEN, D ;
LEVIN, DL ;
ANDERSON, CM .
MAGNETIC RESONANCE IN MEDICINE, 1994, 32 (04) :540-545