A nuclear matter calculation with the tensor-optimized Fermi sphere method with central interaction

被引:6
作者
Yamada, T. [1 ]
Myo, T. [2 ,3 ]
Toki, H. [3 ]
Horiuchi, H. [3 ]
Ikeda, K. [4 ]
机构
[1] Kanto Gakuin Univ, Coll Sci & Engn, Yokohama, Kanagawa 2368501, Japan
[2] Osaka Inst Technol, Fac Engn, Gen Educ, Osaka, Osaka 5358585, Japan
[3] Osaka Univ, RCNP, Ibaraki, Osaka 5670047, Japan
[4] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan
基金
日本学术振兴会;
关键词
ANTISYMMETRIZED MOLECULAR-DYNAMICS; BRUECKNER-GOLDSTONE EXPANSION; MANY-BODY PROBLEM; CLUSTER-EXPANSION; VARIATIONAL METHOD; ALPHA-PARTICLE; STATE;
D O I
10.1093/ptep/ptz117
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The tensor-optimized Fermi sphere (TOFS) theory is applied first for the study of the property of nuclear matter using the Argonne V4' NN potential. In the TOFS theory, the correlated nuclear matter wave function is taken to be a power-series type of the correlation function F, where F can induce central, spin-isospin, tensor, etc. correlations. This expression has been ensured by a linked cluster expansion theorem established in the TOFS theory. We take into account the contributions from all the many-body terms arising from the product of the nuclear matter Hamiltonian H and F. The correlation function is optimally determined in the variation of the total energy of nuclear matter. It is found that the density dependence of the energy per particle in nuclear matter is reasonably reproduced up to the nuclear matter density rho similar or equal to 0.20 fm(-3) in the present numerical calculation, in comparison with other methods such as the Brueckner-Hartree-Fock approach.
引用
收藏
页数:17
相关论文
共 69 条
[1]   Lattice calculation of thermal properties of low-density neutron matter with pionless NN effective field theory [J].
Abe, T. ;
Seki, R. .
PHYSICAL REVIEW C, 2009, 79 (05)
[2]   Equation of state of nucleon matter and neutron star structure [J].
Akmal, A ;
Pandharipande, VR ;
Ravenhall, DG .
PHYSICAL REVIEW C, 1998, 58 (03) :1804-1828
[3]   Coupled-cluster studies of infinite nuclear matter [J].
Baardsen, G. ;
Ekstrom, A. ;
Hagen, G. ;
Hjorth-Jensen, M. .
PHYSICAL REVIEW C, 2013, 88 (05)
[4]   NUCLEAR-MATTER WITHIN THE CONTINUOUS CHOICE [J].
BALDO, M ;
BOMBACI, I ;
FERREIRA, LS ;
GIANSIRACUSA, G ;
LOMBARDO, U .
PHYSICAL REVIEW C, 1991, 43 (06) :2605-2609
[5]   Bethe-Brueckner-Goldstone expansion in neutron matter [J].
Baldo, M ;
Giansiracusa, G ;
Lombardo, U ;
Song, HQ .
PHYSICS LETTERS B, 2000, 473 (1-2) :1-5
[6]   Comparative study of neutron and nuclear matter with simplified Argonne nucleon-nucleon potentials [J].
Baldo, M. ;
Polls, A. ;
Rios, A. ;
Schulze, H. -J. ;
Vidana, I. .
PHYSICAL REVIEW C, 2012, 86 (06)
[7]  
Baldo M., 2001, PHYS REV C, V65
[8]   NUCLEAR MANY-BODY PROBLEM [J].
BETHE, HA .
PHYSICAL REVIEW, 1956, 103 (05) :1353-1390
[9]   EFFECT OF A REPULSIVE CORE IN THE THEORY OF COMPLEX NUCLEI [J].
BETHE, HA ;
GOLDSTONE, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 238 (1215) :551-567
[10]   The α-particle in nuclear matter [J].
Beyer, M ;
Sofianos, SA ;
Kuhrts, C ;
Röpke, G ;
Schuck, P .
PHYSICS LETTERS B, 2000, 488 (3-4) :247-253