Drift-diffusion equations on domains in Rd: Essential self-adjointness and stochastic completeness

被引:6
作者
Nenciu, Gheorghe [1 ]
Nenciu, Irina [1 ,2 ]
机构
[1] Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei,Sect 1, Bucharest 010702, Romania
[2] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60680 USA
关键词
Drift-diffusion equations; Symmetric operators; Self-adjoint extensions; Stochastic completeness; LAPLACE-BELTRAMI OPERATOR; ESSENTIAL SELFADJOINTNESS; ELLIPTIC-OPERATORS; SCHRODINGER; EXTENSIONS;
D O I
10.1016/j.jfa.2017.06.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of quantum and stochastic confinement for drift-diffusion equations on domains Omega subset of R-d. We obtain various sufficient conditions on the behavior of the co-efficients near the boundary of Omega which ensure the essential self-adjointness or stochastic completeness of the symmetric form of the drift-diffusion operator, -1/rho(infinity) del . rho D-infinity del. The proofs are based on the method developed in [31] for quantum confinement on bounded domains in R-d. In particular for stochastic confinement we combine the Liouville property with Agmon type exponential estimates for weak solutions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:2619 / 2654
页数:36
相关论文
共 42 条
[1]  
Agmon Shmuel., 1982, Mathematical Notes, V29
[2]  
[Anonymous], 2012, GRAD TEXTS MATH
[3]  
[Anonymous], 1994, DIRICHLET FORMS SYMM
[4]  
[Anonymous], 1994, DIFFERENTIAL TOPOLOG
[5]   On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations [J].
Arnold, A ;
Markowich, P ;
Toscani, G ;
Unterreiter, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :43-100
[6]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[7]   Self-adjoint extensions and stochastic completeness of the Laplace-Beltrami operator on conic and anticonic surfaces [J].
Boscain, Ugo ;
Prandi, Dario .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) :3234-3269
[8]   THE LAPLACE-BELTRAMI OPERATOR IN ALMOST-RIEMANNIAN GEOMETRY [J].
Boscain, Ugo ;
Laurent, Camille .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (05) :1739-1770
[9]   Essential self-adjointness of Schrodinger-type operators on manifolds [J].
Braverman, M ;
Milatovic, O ;
Shubin, M .
RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) :641-692
[10]  
Brusentsev A.G., 2004, T MOSC MATH SOC, P31