Data-driven learning and prediction of inorganic crystal structures

被引:73
作者
Deringer, Volker L. [1 ,2 ]
Proserpio, Davide M. [3 ,4 ]
Csanyi, Gabor [1 ]
Pickard, Chris J. [5 ,6 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[3] Univ Milan, Dipartimento Chim, Milan, Italy
[4] Samara State Tech Univ, SCTMS, Samara 443100, Russia
[5] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[6] Tohoku Univ, Adv Inst Mat Res, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
基金
英国工程与自然科学研究理事会;
关键词
MATERIALS DISCOVERY; PHOSPHORUS; PRINCIPLES; CHEMISTRY; APPROXIMATION; ALLOTROPES; POLYMORPHS; LANDSCAPES;
D O I
10.1039/c8fd00034d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Crystal structure prediction algorithms, including ab initio random structure searching (AIRSS), are intrinsically limited by the huge computational cost of the underlying quantum-mechanical methods. We have recently shown that a novel class of machine learning (ML) based interatomic potentials can provide a way out: by performing a high-dimensional fit to the ab initio energy landscape, these potentials reach comparable accuracy but are orders of magnitude faster. In this paper, we develop our approach, dubbed Gaussian approximation potential-based random structure searching (GAP-RSS), towards a more general tool for exploring configuration spaces and predicting structures. We present a GAP-RSS interatomic potential model for elemental phosphorus, which identifies and correctly learns the orthorhombic black phosphorus (A17) structure without prior knowledge of any crystalline allotropes. Using the tubular structure of fibrous phosphorus as an example, we then discuss the limits of free searching, and discuss a possible way forward that combines a recently proposed fragment analysis with GAP-RSS. Examples of possible tubular (1D) and extended (3D) hypothetical allotropes of phosphorus as found by GAP-RSS are discussed. We believe that in the future, ML potentials could become versatile and routine computational tools for materials discovery and design.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 74 条
[1]   Revealing and exploiting hierarchical material structure through complex atomic networks [J].
Ahnert, Sebastian E. ;
Grant, William P. ;
Pickard, Chris J. .
NPJ COMPUTATIONAL MATERIALS, 2017, 3
[2]   Van der Waals interactions in selected allotropes of phosphorus [J].
Bachhuber, Frederik ;
von Appen, Joerg ;
Dronskowski, Richard ;
Schmidt, Peer ;
Nilges, Tom ;
Pfitzner, Arno ;
Weihrich, Richard .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2015, 230 (02) :107-115
[3]   The Extended Stability Range of Phosphorus Allotropes [J].
Bachhuber, Frederik ;
von Appen, Joerg ;
Dronskowski, Richard ;
Schmidt, Peer ;
Nilges, Tom ;
Pfitzner, Arno ;
Weihrich, Richard .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (43) :11629-11633
[4]   Machine learning unifies the modeling of materials and molecules [J].
Bartok, Albert P. ;
De, Sandip ;
Poelking, Carl ;
Bernstein, Noam ;
Kermode, James R. ;
Csanyi, Gabor ;
Ceriotti, Michele .
SCIENCE ADVANCES, 2017, 3 (12)
[5]   Gaussian approximation potentials: A brief tutorial introduction [J].
Bartok, Albert P. ;
Csanyi, Gabor .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1051-1057
[6]   Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water [J].
Bartok, Albert P. ;
Gillan, Michael J. ;
Manby, Frederick R. ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 88 (05)
[7]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[8]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[9]   CONTRIBUTIONS TO THE CHEMISTRY OF PHOSPHORUS .118. CHAIN AND RING PHOSPHORUS-COMPOUNDS - ANALOGIES BETWEEN PHOSPHORUS AND CARBON-CHEMISTRY [J].
BAUDLER, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1982, 21 (07) :492-512
[10]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)