Temperature-Dependent Magnetic Properties of Bi-Doped Fe16N2: First Principles and Atomistic Study

被引:1
作者
Khan, Imran [1 ]
Park, Sungkyun [2 ]
Hong, Jisang [1 ]
机构
[1] Pukyong Natl Univ, Dept Phys, Busan 48513, South Korea
[2] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Coercive field; Fe16N2; magnetic anisotropy; magnetization; permanent magnet (PM); TOTAL-ENERGY CALCULATIONS; ANISOTROPY; PHASE;
D O I
10.1109/TMAG.2019.2938496
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using the first principle calculations, we investigated the temperature-dependent magnetic properties of Bi-doped Fe16N2. We found that the Bi doping resulted in the lattice expansion and consequently the volume expansion occurred. Due to this volume expansion, the saturation magnetization of Bi-doped system was suppressed by 12% compared with that of pure Fe16N2. Nonetheless, the hybridization effect between Fe 3d and Bi 6p orbitals contributed to enhancing the magnetocrystalline anisotropy from 0.73 meV/cell in pure Fe16N2 to 1.57 meV/cell in Bi-doped system. Through the temperature-dependent magnetization dynamics, we found that the Bi-doped system had a coercive field of 9.63 kOe at 300 K while the pure Fe16N2 alloy had a coercive field of 3.61 kOe. Furthermore, a maximum energy product of 70.2 MGOe at 300 K was found in Bi-doped system. Overall, we propose that the Bi-doped system can be a potential rare-earth-free permanent magnet (PM).
引用
收藏
页数:5
相关论文
共 31 条
[1]   High-temperature magnetic properties of mechanically alloyed SmCo5 and YCo5 magnets [J].
Al-Omari, IA ;
Skomski, R ;
Thomas, RA ;
Leslie-Pelecky, D ;
Sellmyer, DJ .
IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (04) :2534-2536
[2]   Phase Concentration Determination of Fe16N2 Using State of the Art Neutron Scattering Techniques [J].
Bennett, S. P. ;
Feygenson, M. ;
Jiang, Y. ;
Zande, B. J. ;
Zhang, X. ;
Sankar, S. G. ;
Wang, J. P. ;
Lauter, V. .
JOM, 2016, 68 (06) :1572-1576
[3]   First-principles study of the complex magnetism in Fe16N2 [J].
Bhattacharjee, Satadeep ;
Lee, Seung-Cheol .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   Magnetic properties of (Fe1-xCox)2B alloys and the effect of doping by 5d elements [J].
Edstroem, A. ;
Werwinski, M. ;
Iusan, D. ;
Rusz, J. ;
Eriksson, O. ;
Skokov, K. P. ;
Radulov, I. A. ;
Ener, S. ;
Kuz'min, M. D. ;
Hong, J. ;
Fries, M. ;
Karpenkov, D. Yu. ;
Gutfleisch, O. ;
Toson, P. ;
Fidler, J. .
PHYSICAL REVIEW B, 2015, 92 (17)
[5]   Nanostructured D022-Mn2Ga Alloys with High Magnetization and Coercivity [J].
El-Gendy, Ahmed A. ;
Hadjipanayis, George C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (16) :8898-8903
[6]   Atomistic spin model simulations of magnetic nanomaterials [J].
Evans, R. F. L. ;
Fan, W. J. ;
Chureemart, P. ;
Ostler, T. A. ;
Ellis, M. O. A. ;
Chantrell, R. W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (10)
[7]  
Evans R.F.L, 2016, Vampire
[8]   Fully unconstrained noncollinear magnetism within the projector augmented-wave method [J].
Hobbs, D ;
Kresse, G ;
Hafner, J .
PHYSICAL REVIEW B, 2000, 62 (17) :11556-11570
[9]   Theory of giant saturation magnetization in α"-Fe16N2: role of partial localization in ferromagnetism of 3d transition metals [J].
Ji, N. ;
Liu, X. ;
Wang, J-P .
NEW JOURNAL OF PHYSICS, 2010, 12
[10]   Anisotropy of W in Fe and Co [J].
Kashyap, A. ;
Manchanda, P. ;
Sahota, P. K. ;
Skomski, Ralph ;
Shield, Jeff E. ;
Sellmyer, D. J. .
IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (10) :3336-3339