In situ conductivity, impedance spectroscopy, and ex situ raman spectra of amorphous silicon during the Insertion/Extraction of lithium

被引:235
作者
Pollak, Elad [1 ]
Salitra, Gregory [1 ]
Baranchugov, Valentina [1 ]
Aurbach, Doron [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
关键词
D O I
10.1021/jp0729563
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrical conductivity and the impedance behavior of thin layers of amorphous silicon ( a-Si), which are promising anode materials for lithium-ion batteries, were monitored in situ during the insertion/extraction of lithium in 1 M of a LiBOB (Li-bioxalato borate) propylene carbonate solution. In addition, Raman spectra of the same electrodes were recorded in situ and ex situ during lithiation/delithiation processes in the above-mentioned solutions. The conductivity of the a-Si electrode was increased by about 3.5 orders of magnitude during the course of lithium insertion. While the impedance response of these electrodes is complicated and cannot be resolved unambiguously, it is clear that the electrical conductivity influences strongly the electrodes' impedance: a similar dependence of the electrical conductivity and the impedance of these electrodes on the potential are measured. The intensity of the Raman signal dropped significantly upon lithiation and recovered at a potential of 0.523 V vs Li/ Li+. It is suggested that the drop in the intensity of the Raman signal of the silicon electrodes upon their lithiation is due to changes in the optical skin depth of the a-Si, which occur upon the formation of the Li-Si alloy.
引用
收藏
页码:11437 / 11444
页数:8
相关论文
共 37 条
[1]   CORRELATION BETWEEN SURFACE-CHEMISTRY, MORPHOLOGY, CYCLING EFFICIENCY AND INTERFACIAL PROPERTIES OF LI ELECTRODES IN SOLUTIONS CONTAINING DIFFERENT LI SALTS [J].
AURBACH, D ;
WEISSMAN, I ;
ZABAN, A ;
CHUSID, O .
ELECTROCHIMICA ACTA, 1994, 39 (01) :51-71
[2]   IMPEDANCE SPECTROSCOPY OF NONACTIVE METAL-ELECTRODES AT LOW POTENTIALS IN PROPYLENE CARBONATE SOLUTIONS - A COMPARISON TO STUDIES OF LI ELECTRODES [J].
AURBACH, D ;
ZABAN, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (07) :1808-1819
[3]   Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes [J].
Baranchugov, V. ;
Markevich, E. ;
Pollak, E. ;
Salitra, G. ;
Aurbach, D. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :796-800
[4]   Reaction of Li with alloy thin films studied by in situ AFM [J].
Beaulieu, LY ;
Hatchard, TD ;
Bonakdarpour, A ;
Fleischauer, MD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1457-A1464
[5]  
Brodsky M.H., 1997, PHYS REV B, V116, P3556
[6]   Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations [J].
Dimov, N ;
Kugino, S ;
Yoshio, M .
ELECTROCHIMICA ACTA, 2003, 48 (11) :1579-1587
[7]  
Dresselhaus M S., 1992, Ion implantation in diamond, graphite and related materials, V22
[8]   In situ Raman study of PPP-based disordered carbon as an anode in a Li ion battery [J].
Endo, M ;
Kim, C ;
Karaki, T ;
Fujino, T ;
Matthews, MJ ;
Brown, SDM ;
Dresslhaus, MS .
SYNTHETIC METALS, 1998, 98 (01) :17-24
[9]   Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition [J].
Han, DX ;
Lorentzen, JD ;
Weinberg-Wolf, J ;
McNeil, LE ;
Wang, Q .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (05) :2930-2936
[10]   Nano silicon for lithium-ion batteries [J].
Holzapfel, Michael ;
Buqa, Hilmi ;
Hardwick, Laurence J. ;
Hahn, Matthias ;
Wuersig, Andreas ;
Scheifele, Werner ;
Novak, Petr ;
Koetz, Ruediger ;
Veit, Claudia ;
Petrat, Frank-Martin .
ELECTROCHIMICA ACTA, 2006, 52 (03) :973-978