Development of PCM/carbon-based composite materials

被引:46
|
作者
Mantilla Gilart, Pablo [1 ]
Yedra Martinez, Angel [1 ]
Gonzalez Barriuso, Marina [1 ]
Manteca Martinez, Carmen [1 ]
机构
[1] Fdn Ctr Tecnol Componentes CTC, Adv Mat Area, Santander 39011, Cantabria, Spain
关键词
Expanded graphite; Carbon nanotubes; Phase change material; Thermal conductivity; Thermal energy storage; THERMAL-ENERGY STORAGE; PHASE-CHANGE MATERIALS; CARBON NANOTUBE; GRAPHITE; CONDUCTIVITY;
D O I
10.1016/j.solmat.2012.06.014
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Innovative Phase Change Material (PCM)/carbon-based composite materials were developed. These materials show higher thermal conductivity than that of pure PCM. An increase of up to 576% in thermal conductivity was obtained. They consist of PCM embedded in a carbon-containing host matrix (expanded graphite or multiwall carbon nanotubes). Previously, different expansion methods were carried out on several types of graphite. A thorough characterization of the graphite was made using Isotherms BET (Brunauer-Emmett-Teller) method (N-2 adsorption), X-ray diffraction (XRD), Raman spectroscopy (RS) and Scanning Electron Microscopy (SEM) which allowed to understand the changes of the microstructure at the different expansion method stages and to select the most efficient expansion method with the most promising graphite. The surface area of the expanded graphite was increased up to 1267%. PCMs inside carbon-based matrices were integrated using an autoclave reactor in a novel way. The composites were thermally characterized by differential scanning calorimetry (DSC), thermal conductivity (TC) and thermal validation tests. These new materials are focused on electronic applications and plastic injection moulds, where high thermal conductivity is required. The objectives are to avoid peak temperature and reduce thermal oscillations, respectively. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [1] Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage: Materials, fabrication and applications
    Hu, Lei
    Zhang, Li
    Cui, Wei
    An, Qinyou
    Ma, Ting
    Wang, Qiuwang
    Mai, Liqiang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 210 : 204 - 226
  • [2] Development of Carbon-Based Nano-Composite Materials for Direct Electron Transfer Based Biosensors
    Sanzo, Gabriella
    Tortolini, Cristina
    Antiochia, Riccarda
    Favero, Gabriele
    Mazzei, Franco
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (05) : 3423 - 3428
  • [3] Thermal properties of carbon-based materials
    Watkins, Evan
    Parekh, Mihir
    Bhattacharya, Sriparna
    Rao, Rahul
    Rao, Apparao M.
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 322
  • [4] Biosensing applications of carbon-based materials
    Joshi, Pratik
    Mishra, Rupesh
    Narayan, Roger J.
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2021, 18
  • [5] Activated carbon/expanded graphite hybrid structure for development of nonadecane based composite PCM with excellent shape stability, enhanced thermal conductivity and heat charging-discharging performance
    Hekimoglu, Gokhan
    Sari, Ahmet
    Gencel, Osman
    Tyagi, V. V.
    Sharma, R. K.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 44
  • [6] Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges
    Tong, Xuan
    Li, Nianqi
    Zeng, Min
    Wang, Qiuwang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 108 : 398 - 422
  • [7] Carbon-Based Composite Phase Change Materials for Thermal Energy Storage, Transfer, and Conversion
    Chen, Xiao
    Cheng, Piao
    Tang, Zhaodi
    Xu, Xiaoliang
    Gao, Hongyi
    Wang, Ge
    ADVANCED SCIENCE, 2021, 8 (09)
  • [8] Fifty years in studying carbon-based materials
    Dresselhaus, Mildred S.
    PHYSICA SCRIPTA, 2012, T146
  • [9] Microwave heating of carbon-based solid materials
    Kim, Teawon
    Lee, Jaegeun
    Lee, Kun-Hong
    CARBON LETTERS, 2014, 15 (01) : 15 - 24
  • [10] Carbon-Based Materials for Thermoelectrics
    Chakraborty, Pranay
    Ma, Tengfei
    Zahiri, Amir Hassan
    Cao, Lei
    Wang, Yan
    ADVANCES IN CONDENSED MATTER PHYSICS, 2018, 2018