Cumulative Conforming Control Chart Assuming Discrete Weibull Distribution

被引:8
作者
Ali, Sajid [1 ]
Zafar, Tanzila [1 ]
Shah, Ismail [1 ]
Wang, Lichen [2 ]
机构
[1] Quaid I Azam Univ, Dept Stat, Islamabad 45320, Pakistan
[2] Linyi Univ, Coll Life Sci, Linyi 276000, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Average run length; discrete Weibull distribution; coefficient of variation; process monitoring; TIME; COUNT; MODEL;
D O I
10.1109/ACCESS.2020.2964602
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Time Between Events (TBE) charts have advantages over the traditional control charts when monitoring high quality processes with very low defect rates. This article introduces a new discrete TBE control chart following discrete Weibull distribution. The design of the proposed chart is derived analytically and discussed numerically. Moreover, the performance is assessed by using the Average Run Length (ARL) and the Coefficient of Variation of Run Length (CVRL). Besides simulation studies, the proposed scheme is also illustrated using four real data examples.
引用
收藏
页码:10123 / 10133
页数:11
相关论文
共 50 条
  • [31] An example of data technology product: A control chart for Weibull processes
    Erto, Pasquale
    Pallotta, Giuliana
    Park, Sung H.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2008, 76 (02) : 157 - 166
  • [32] A CUMULATIVE SUM CONTROL CHART FOR MONITORING PROCESS VARIANCE
    CHANG, TC
    GAN, FF
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 1995, 27 (02) : 109 - 119
  • [33] A study of economic design of control charts for cumulative count of conforming items
    Xie, M
    Goh, TN
    Xie, W
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (03) : 1009 - 1027
  • [34] Repairable System Analysis Using the Discrete Weibull Distribution
    Valadares, Danilo Gilberto de Oliveira
    Quinino, Roberto C.
    Cruz, Frederico R. B.
    Ho, Linda Lee
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (04) : 1507 - 1514
  • [35] Theoretical results on the discrete Weibull distribution of Nakagawa and Osaki
    Vila, Roberto
    Nakano, Eduardo Y.
    Saulo, Helton
    [J]. STATISTICS, 2019, 53 (02) : 339 - 363
  • [36] On the Development of EWMA Control Chart for Inverse Maxwell Distribution
    Arafat, Sheikh Y.
    Hossain, M. Pear
    Ajadi, Jimoh Olawale
    Riaz, Muhammad
    [J]. JOURNAL OF TESTING AND EVALUATION, 2021, 49 (02) : 1086 - 1103
  • [37] New Cumulative Sum Control Chart for Monitoring Poisson Processes
    Abujiya, MU'Azu Ramat
    [J]. IEEE ACCESS, 2017, 5 : 14298 - 14308
  • [38] Properties and performance of one-sided cumulative count of conforming chart with parameter estimation in high-quality processes
    Chiu, Jing-Er
    Tsai, Chih-Hsin
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (11) : 2341 - 2353
  • [39] Bayesian Estimation of the Parameters of Discrete Weibull Type (I) Distribution
    Ashour, Samir Kamel
    Muiftah, Mohamed Salem Abdelwahab
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2019, 18 (02)
  • [40] Monitoring reliability for a gamma distribution with a double progressive mean control chart
    Alevizakos, Vasileios
    Koukouvinos, Christos
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2021, 37 (01) : 199 - 218