Model-based recursive partitioning

被引:492
作者
Zelleis, Achim [1 ]
Hothorn, Torsten [2 ]
Hornik, Kurt [1 ]
机构
[1] Vienna Univ Econ & Business Adm, Dept Math & Stat, A-1090 Vienna, Austria
[2] Univ Munich, Inst Stat, D-80539 Munich, Germany
关键词
change points; maximum likelihood; parameter instability;
D O I
10.1198/106186008X319331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recursive partitioning is embedded into the general and well-established class of parametric models that can be fitted using M-type estimators (including maximum likelihood). An algorithm for model-based recursive partitioning is suggested for which the basic steps are: (1) fit a parametric model to a dataset; (2) test for parameter instability over a set of partitioning variables; (3) if there is some overall parameter instability, split the model with respect to the variable associated with the highest instability; (4) repeat the procedure in each of the daughter nodes. The algorithm yields a partitioned (or segmented) parametric model that can be effectively visualized and that subject-matter scientists are used to analyzing and interpreting.
引用
收藏
页码:492 / 514
页数:23
相关论文
共 57 条
[11]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[12]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[13]   Boosting with the L2 loss:: Regression and classification [J].
Bühlmann, P ;
Yu, B .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) :324-339
[14]   LOTUS: An algorithm for building accurate and comprehensible logistic regression trees [J].
Chan, KY ;
Loh, WY .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (04) :826-852
[15]   Regression trees for analysis of count data with extra Poisson variation [J].
Choi, Y ;
Ahn, H ;
Chen, JJ .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (03) :893-915
[16]   TESTS OF EQUALITY BETWEEN SETS OF COEFFICIENTS IN 2 LINEAR REGRESSIONS [J].
CHOW, GC .
ECONOMETRICA, 1960, 28 (03) :591-605
[17]   MOSUM TESTS FOR PARAMETER CONSTANCY [J].
CHU, CSJ ;
HORNIK, K ;
KUAN, CM .
BIOMETRIKA, 1995, 82 (03) :603-617
[18]   Functional trees [J].
Gama, J .
MACHINE LEARNING, 2004, 55 (03) :219-250
[19]   GRAPHICAL METHODS FOR CENSORED-DATA [J].
GENTLEMAN, R ;
CROWLEY, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (415) :678-683
[20]  
Graf E, 1999, STAT MED, V18, P2529