Learning Parameters in Canonical Models Using Weighted Least Squares

被引:0
作者
Nowak, Krzysztof [1 ,3 ]
Druzdzel, Marek J. [1 ,2 ]
机构
[1] Bialystok Tech Univ, Bialystok, Poland
[2] Sch Informat Sci, Pittsburgh, PA USA
[3] European Space Agcy, NL-2200 AG Noordwijk, Netherlands
来源
PROBABILISTIC GRAPHICAL MODELS | 2014年 / 8754卷
关键词
Bayesian networks; canonical models; noisy-MAX gates; parameter learning; weighted least squares;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel approach to learning parameters of canonical models from small data sets using a concept employed in regression analysis: weighted least squares method. We assess the performance of our method experimentally and show that it typically outperforms simple methods used in the literature in terms of accuracy of the learned conditional probability distributions.
引用
收藏
页码:366 / 381
页数:16
相关论文
共 13 条
  • [1] Diez F. J., 2006, TECHNICAL REPORT
  • [2] Diez F.J., 1993, PROC 9 C UNCERTAINTY, P99, DOI DOI 10.1016/B978-1-4832-1451-1.50016-0
  • [3] FRIEDMAN N, 1999, LEARNING GRAPHICAL M, P421
  • [4] On choosing and bounding probability metrics
    Gibbs, AL
    Su, FE
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2002, 70 (03) : 419 - 435
  • [5] Heckerman D., 1998, Learning in Graphical Models
  • [6] Henrion M., 1987, ART INT 3 ANN C UNC, P161
  • [7] Learning Bayesian network parameters from small data sets: application of Noisy-OR gates
    Onisko, A
    Druzdzel, MJ
    Wasyluk, H
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2001, 27 (02) : 165 - 182
  • [8] Impact of precision of Bayesian network parameters on accuracy of medical diagnostic systems
    Onisko, Agnieszka
    Druzdzel, Marek J.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2013, 57 (03) : 197 - 206
  • [9] Pearl J., 1988, PROBABILISTIC REASON, DOI DOI 10.1016/C2009-0-27609-4
  • [10] SRINIVAS S, 1993, P 9 C UNC ART INT, P208, DOI DOI 10.1016/B978-1-4832-1451-1.50030-5