Two-dimensional superfluid flows in inhomogeneous Bose-Einstein condensates

被引:16
作者
Yan, Zhenya [1 ]
Konotop, V. V. [3 ,4 ]
Yulin, A. V. [3 ,4 ]
Liu, W. M. [2 ]
机构
[1] Chinese Acad Sci, Inst Syst Sci, Key Lab Math Mechanizat, AMSS, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Univ Lisbon, Fac Ciencias, Dept Fis, P-1649003 Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 01期
关键词
NONLINEAR SCHRODINGER-EQUATION; SOLITONS; DYNAMICS;
D O I
10.1103/PhysRevE.85.016601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report an algorithm of constructing linear and nonlinear potentials in the two-dimensional Gross-Pitaevskii equation subject to given boundary conditions, which allow for exact analytic solutions. The obtained solutions represent superfluid flows in inhomogeneous Bose-Einstein condensates. The method is based on the combination of the similarity reduction of the two-dimensional Gross-Pitaevskii equation to the one-dimensional nonlinear Schrodinger equation, the latter allowing for exact solutions, with the conformal mapping of the given domain, where the flow is considered, to a half space. The stability of the obtained flows is addressed. A number of stable and physically relevant examples are described.
引用
收藏
页数:5
相关论文
共 31 条
[21]   Similarity transformations for nonlinear Schrodinger equations with time-dependent coefficients [J].
Perez-Garcia, Victor M. ;
Torres, Pedro J. ;
Konotop, Vladimir V. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 221 (01) :31-36
[22]  
Ponomarenko SA, 2006, PHYS REV LETT, V97, DOI [10.1103/PhysRevLett.97.013901, 10.1103/PhysRevLett.013901]
[23]   PROPERTIES OF THE NONLINEAR SCHRODINGER-EQUATION ON A LATTICE [J].
SCHARF, R ;
BISHOP, AR .
PHYSICAL REVIEW A, 1991, 43 (12) :6535-6544
[24]   Nonautonomous solitons in external potentials [J].
Serkin, V. N. ;
Hasegawa, Akira ;
Belyaeva, T. L. .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[25]   Novel soliton solutions of the nonlinear Schrodinger equation model [J].
Serkin, VN ;
Hasegawa, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4502-4505
[26]   Exact solutions to three-dimensional generalized nonlinear Schroumldinger equations with varying potential and nonlinearities [J].
Yan, Zhenya ;
Konotop, V. V. .
PHYSICAL REVIEW E, 2009, 80 (03)
[27]   Three-dimensional rogue waves in nonstationary parabolic potentials [J].
Yan, Zhenya ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2010, 82 (03)
[28]   Nonautonomous "rogons" in the inhomogeneous nonlinear Schrodinger equation with variable coefficients [J].
Yan, Zhenya .
PHYSICS LETTERS A, 2010, 374 (04) :672-679
[29]   Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation [J].
Yan, Zhenya ;
Hang, Chao .
PHYSICAL REVIEW A, 2009, 80 (06)
[30]   Exact stationary wave patterns in three coupled nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Yan, Zhenya ;
Chow, K. W. ;
Malomed, Boris A. .
CHAOS SOLITONS & FRACTALS, 2009, 42 (05) :3013-3019