Two-dimensional superfluid flows in inhomogeneous Bose-Einstein condensates

被引:15
作者
Yan, Zhenya [1 ]
Konotop, V. V. [3 ,4 ]
Yulin, A. V. [3 ,4 ]
Liu, W. M. [2 ]
机构
[1] Chinese Acad Sci, Inst Syst Sci, Key Lab Math Mechanizat, AMSS, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Univ Lisbon, Fac Ciencias, Dept Fis, P-1649003 Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 01期
关键词
NONLINEAR SCHRODINGER-EQUATION; SOLITONS; DYNAMICS;
D O I
10.1103/PhysRevE.85.016601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report an algorithm of constructing linear and nonlinear potentials in the two-dimensional Gross-Pitaevskii equation subject to given boundary conditions, which allow for exact analytic solutions. The obtained solutions represent superfluid flows in inhomogeneous Bose-Einstein condensates. The method is based on the combination of the similarity reduction of the two-dimensional Gross-Pitaevskii equation to the one-dimensional nonlinear Schrodinger equation, the latter allowing for exact solutions, with the conformal mapping of the given domain, where the flow is considered, to a half space. The stability of the obtained flows is addressed. A number of stable and physically relevant examples are described.
引用
收藏
页数:5
相关论文
共 31 条
  • [1] Dissipative periodic waves, solitons, and breathers of the nonlinear Schrodinger equation with complex potentials
    Abdullaev, F. Kh.
    Konotop, V. V.
    Salerno, M.
    Yulin, A. V.
    [J]. PHYSICAL REVIEW E, 2010, 82 (05):
  • [2] Exciton-polariton spin switches
    Amo, A.
    Liew, T. C. H.
    Adrados, C.
    Houdre, R.
    Giacobino, E.
    Kavokin, A. V.
    Bramati, A.
    [J]. NATURE PHOTONICS, 2010, 4 (06) : 361 - 366
  • [3] Collective fluid dynamics of a polariton condensate in a semiconductor microcavity
    Amo, A.
    Sanvitto, D.
    Laussy, F. P.
    Ballarini, D.
    del Valle, E.
    Martin, M. D.
    Lemaitre, A.
    Bloch, J.
    Krizhanovskii, D. N.
    Skolnick, M. S.
    Tejedor, C.
    Vina, L.
    [J]. NATURE, 2009, 457 (7227) : 291 - U3
  • [4] [Anonymous], 2010, PHYS LETT A, V374, P4838
  • [5] Solitons with cubic and quintic nonlinearities modulated in space and time
    Avelar, A. T.
    Bazeia, D.
    Cardoso, W. B.
    [J]. PHYSICAL REVIEW E, 2009, 79 (02):
  • [6] Localized nonlinear waves in systems with time- and space-modulated nonlinearities
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Vekslerchik, Vadym
    Konotop, Vladimir V.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (16)
  • [7] Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Vekslerchik, Vadym
    Torres, Pedro J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [8] Dynamics of inhomogeneous condensates in contact with a surface
    Bludov, Yu. V.
    Yan, Zhenya
    Konotop, V. V.
    [J]. PHYSICAL REVIEW A, 2010, 81 (06):
  • [9] DISCRETE VERSION OF THE NON-LINEAR SCHRODINGER EQUATION WITH LINEARLY CHI-DEPENDENT COEFFICIENTS
    BRUSCHI, M
    LEVI, D
    RAGNISCO, O
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1979, 53 (01): : 21 - 30
  • [10] SOLITONS IN NONUNIFORM MEDIA
    CHEN, HH
    LIU, CS
    [J]. PHYSICAL REVIEW LETTERS, 1976, 37 (11) : 693 - 697