Effective finite temperature partition function for fields on noncommutative flat manifolds

被引:16
作者
Bytsenko, AA
Elizalde, E
Zerbini, S
机构
[1] Univ Estadual Londrina, Dept Fis, Londrina, Parana, Brazil
[2] CSIC, Inst Ciencias Espacio, ES-08034 Barcelona, Spain
[3] CSIC, IEEC, ES-08034 Barcelona, Spain
[4] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[5] Univ Barcelona, Fac Fis, IFAE, E-08028 Barcelona, Spain
[6] Univ Trent, Dept Phys, Grp Collegato, INFN Trento,Sez Padova, I-38100 Trento, Italy
关键词
D O I
10.1103/PhysRevD.64.105024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The first quantum correction to the finite temperature partition function for a self-interacting massless scalar field on a D-dimensional flat manifold with p noncommutative extra dimensions is evaluated by means of dimensional regularization, supplemented with zeta-function techniques. It is found that the zeta function associated with the effective one-loop operator may be nonregular at the origin. The important issue of the determination of the regularized vacuum energy, namely the first quantum correction to the energy in such a case, is discussed.
引用
收藏
页数:7
相关论文
共 36 条
[1]  
Arcioni G, 2000, J HIGH ENERGY PHYS
[2]  
Arcioni G, 2000, J HIGH ENERGY PHYS
[3]  
Ardalan F, 1999, J HIGH ENERGY PHYS
[4]   ZETA-FUNCTIONS AND THE CASIMIR ENERGY [J].
BLAU, SK ;
VISSER, M ;
WIPF, A .
NUCLEAR PHYSICS B, 1988, 310 (01) :163-180
[5]   Heat-kernels and functional determinants on the generalized cone [J].
Bordag, M ;
Kirsten, K ;
Dowker, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (02) :371-393
[6]   Quantum fields and extended objects in space-times with constant curvature spatial section [J].
Bytsenko, AA ;
Cognola, G ;
Vanzo, L ;
Zerbini, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 266 (1-2) :1-126
[7]   Quantum fields in hyperbolic spacetimes with finite spatial volume [J].
Bytsenko, AA ;
Cognola, G ;
Zerbini, S .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (03) :615-627
[8]  
BYTSENKO AA, HEPTH0011252
[9]  
Cai RG, 2000, PHYS REV D, V61, DOI 10.1103/PhysRevD.61.124012
[10]   Non-commutative geometry from 0-branes in a background B-field [J].
Cheung, YKE ;
Krogh, M .
NUCLEAR PHYSICS B, 1998, 528 (1-2) :185-196