Low-loss crystalline coatings for the near- and mid-infrared

被引:2
作者
Cole, G. D. [1 ,2 ]
Zhang, W. [3 ,4 ]
Bjork, B. J. [3 ,4 ]
Follman, D. [1 ]
Heu, P. [1 ]
Deutsch, C. [2 ]
Sonderhouse, L. [3 ,4 ]
Franz, C. [5 ]
Alexandrovski, A. [5 ]
Heckl, O. H. [3 ,4 ]
Ye, J. [3 ,4 ]
Aspelmeyer, M. [6 ]
机构
[1] Crystalline Mirror Solut LLC, Santa Barbara, CA 93101 USA
[2] Crystalline Mirror Solut GmbH, A-1010 Vienna, Austria
[3] NIST, JILA, Boulder, CO 80309 USA
[4] Univ Colorado, Boulder, CO 80309 USA
[5] Stanford Photothermal Solut, Pahoa, HI 96778 USA
[6] Univ Vienna, Vienna Ctr Quantum Sci & Technol, A-1090 Vienna, Austria
来源
ADVANCED OPTICS FOR DEFENSE APPLICATIONS: UV THROUGH LWIR | 2016年 / 9822卷
关键词
absorption; aluminum gallium arsenide; distributed Bragg reflectors; epitaxial layer transfer; interference coatings; mid-infrared; optical resonators; thermal noise; MECHANICAL LOSS; GAAS; NOISE; REDUCTION; LASER;
D O I
10.1117/12.2234740
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Substrate-transferred crystalline coatings have recently emerged as a groundbreaking new concept in optical interference coatings. Building upon our initial demonstration of this technology, we have recently realized significant improvements in the limiting optical performance of these novel single-crystal GaAs/AlGaAs multilayers. In the near-infrared (NIR), for center wavelengths spanning 1064 to 1560 nm, we have reduced the excess optical losses (scatter + absorption) to less than 5 ppm, enabling the realization of a cavity finesse exceeding 300,000 at the telecom-relevant wavelength range near 1550 nm. Moreover, we demonstrate the direct measurement of sub-ppm optical absorption at 1064 nm. Concurrently, we investigate the mid-IR (MIR) properties of these coatings and observe exceptional performance for first attempts in this important wavelength region. Specifically, we verify excess losses at the hundred ppm level for wavelengths of 3300 and 3700 nm. Taken together, our NIR optical losses are now fully competitive with ion beam sputtered films, while our first prototype MIR optics have already reached state-of-the-art performance levels for reflectors covering the important fingerprint region for optical gas sensing. Thus, mirrors fabricated via this technique exhibit the lowest mechanical loss (and thus Brownian noise), the highest thermal conductivity, and, potentially, the widest spectral coverage of any "supermirror"technology, owing to state-of-the art levels of scatter and absorption losses in both the near and mid IR, all in a single material platform. Looking ahead, we see a bright future for crystalline coatings in applications requiring the ultimate levels of optical, thermal, and optomechanical performance.
引用
收藏
页数:7
相关论文
共 26 条
  • [1] Advanced LIGO
    Aasi, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T.
    Abernathy, M. R.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V.
    Affeldt, C.
    Aggarwal, N.
    Aguiar, O. D.
    Ain, A.
    Ajith, P.
    Alemic, A.
    Allen, B.
    Amariutei, D.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Areeda, J. S.
    Ashton, G.
    Ast, S.
    Aston, S. M.
    Aufmuth, P.
    Aulbert, C.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballmer, S. W.
    Barayoga, J. C.
    Barbet, M.
    Barclay, S.
    Barish, B. C.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Batch, J. C.
    Baune, C.
    Behnke, B.
    Bell, A. S.
    Bell, C.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
  • [2] Observation of Gravitational Waves from a Binary Black Hole Merger
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Arain, M. A.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [3] [Anonymous], P SPIE OPT PHOT OPT
  • [4] [Anonymous], OPTICA IN PRESS
  • [5] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [6] Wafer fusion: Materials issues and device results
    Black, A
    Hawkins, AR
    Margalit, NM
    Babic, DI
    Holmes, AL
    Chang, YL
    Abraham, P
    Bowers, JE
    Hu, EL
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (03) : 943 - 951
  • [7] Femtosecond laser fabrication of high reflectivity micromirrors
    Brodoceanu, D.
    Cole, G. D.
    Kiesel, N.
    Aspelmeyer, M.
    Baeuerle, D.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (04)
  • [8] Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors
    Chalermsongsak, Tara
    Hall, Evan D.
    Cole, Garrett D.
    Follman, David
    Seifert, Frank
    Arai, Koji
    Gustafson, Eric K.
    Smith, Joshua R.
    Aspelmeyer, Markus
    Adhikari, Rana X.
    [J]. METROLOGIA, 2016, 53 (02) : 860 - 868
  • [9] Cole GD, 2013, NAT PHOTONICS, V7, P644, DOI [10.1038/nphoton.2013.174, 10.1038/NPHOTON.2013.174]
  • [10] Free-standing AlxGa1-xAs heterostructures by gas-phase etching of germanium
    Cole, Garrett D.
    Bai, Yu
    Aspelmeyer, Markus
    Fitzgerald, Eugene A.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (26)