Implementation of a three-qubit Toffoli gate in a single step

被引:15
作者
Chen, Ai Min [1 ,2 ]
Cho, Sam Young [1 ,2 ]
Kim, Mun Dae [3 ,4 ]
机构
[1] Chongqing Univ, Ctr Modern Phys, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Dept Phys, Chongqing 400044, Peoples R China
[3] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea
[4] Korea Inst Adv Study, Seoul 130722, South Korea
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 03期
基金
新加坡国家研究基金会;
关键词
QUANTUM DYNAMICS; DECOHERENCE;
D O I
10.1103/PhysRevA.85.032326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Single-step implementations of multiqubit gates are generally believed to provide a simpler design, a faster operation, and a lower decoherence. For three coupled qubits interacting with a photon field, a realizable scheme for a single-step Toffoli gate is investigated. We find that the three-qubit system can be described by four effective modified Jaynes-Cummings models in the states of two control qubits. Within the rotating-wave approximation, the modified Jaynes-Cummings models are shown to be reduced to the conventional Jaynes-Cummings models with renormalized couplings between qubits and photon fields. A single-step Toffoli gate is shown to be realizable with tuning of the four characteristic oscillation periods that satisfy a commensurate condition. Possible values of the system parameters are estimated for a single-step Toffoli gate. Further, we discuss our single-step Toffoli-gate operation errors due to imperfections in the system parameters; numerical calculations show that a Toffoli gate with high fidelity can be obtained by adjusting pairs of the photon-qubit and qubit-qubit coupling strengths. In addition, a decoherence effect on the Toffoli-gate operation due to a thermal reservoir is discussed.
引用
收藏
页数:8
相关论文
共 27 条
[1]  
[Anonymous], 1973, Quantum Statistical Properties of Radiation
[2]  
[Anonymous], 1965, HDB MATH FUNCTIONS F
[3]   CONDITIONAL QUANTUM DYNAMICS AND LOGIC GATES [J].
BARENCO, A ;
DEUTSCH, D ;
EKERT, A ;
JOZSA, R .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4083-4086
[4]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[5]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[6]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)
[7]   Coherent dynamics of a flux qubit coupled to a harmonic oscillator [J].
Chiorescu, I ;
Bertet, P ;
Semba, K ;
Nakamura, Y ;
Harmans, CJPM ;
Mooij, JE .
NATURE, 2004, 431 (7005) :159-162
[8]   Coherent quantum dynamics of a superconducting flux qubit [J].
Chiorescu, I ;
Nakamura, Y ;
Harmans, CJPM ;
Mooij, JE .
SCIENCE, 2003, 299 (5614) :1869-1871
[9]   Experimental quantum error correction [J].
Cory, DG ;
Price, MD ;
Maas, W ;
Knill, E ;
Laflamme, R ;
Zurek, WH ;
Havel, TF ;
Somaroo, SS .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2152-2155
[10]  
de Bakker J. W., 1980, AUTOMATA LANGUAGES P, V84