A sharp interface evolutionary model for shape memory alloys

被引:1
作者
Knuepfer, Hans [1 ,2 ]
Kruzik, Martin [3 ,4 ]
机构
[1] Heidelberg Univ, Inst Appl Math, Neuenheimer Feld 294, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, IWR, Neuenheimer Feld 294, D-69120 Heidelberg, Germany
[3] CAS, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, CZ-18208 Prague 8, Czech Republic
[4] Czech Tech Univ, Fac Civil Engn, Thakurova 7, Prague 16629, Czech Republic
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2016年 / 96卷 / 11期
关键词
Polyconvexity; shape memory materials; rate-independent problems; PHENOMENOLOGICAL MODEL; CONVEXITY CONDITIONS; VARIATIONAL MODEL; PHASE-TRANSITIONS; RIGIDITY RESULT; ENERGY; MICROSTRUCTURE; HYSTERESIS; EXISTENCE; BOUNDARIES;
D O I
10.1002/zamm.201500209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of an energetic solution to a quasistatic evolutionary model of shape memory alloys. Elastic behavior of each material phase/variant is described by polyconvex energy density. Additionally, to every phase boundary, there is an interface-polyconvex energy assigned, introduced by M. Silhavy in [49]. The model considers internal variables describing the evolving spatial arrangement of the material phases and a deformation mapping with its first-order gradients. It allows for injectivity and orientation-preservation of deformations. Moreover, the resulting material microstructures have finite length scales. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1347 / 1355
页数:9
相关论文
共 53 条
[11]   A quantitative rigidity result for the cubic-to-tetragonal phase transition in the geometrically linear theory with interfacial energy [J].
Capella, Antonio ;
Otto, Felix .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (02) :273-327
[12]   A Rigidity Result for a Perturbation of the Geometrically Linear Three-Well Problem [J].
Capella, Antonio ;
Otto, Felix .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (12) :1632-1669
[13]   Energy scaling and branched microstructures in a model for shape-memory alloys with SO(2) invariance [J].
Chan, Allan ;
Conti, Sergio .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (06) :1091-1124
[14]   Domain branching in uniaxial ferromagnets: A scaling law for the minimum energy [J].
Choksi, R ;
Kohn, RV ;
Otto, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (01) :61-79
[15]  
Choksi R, 1998, COMMUN PUR APPL MATH, V51, P259, DOI 10.1002/(SICI)1097-0312(199803)51:3<259::AID-CPA3>3.0.CO
[16]  
2-9
[17]  
Ciarlet P.G., 1983, LECT 3 DIMENSIONAL E
[18]   INJECTIVITY AND SELF-CONTACT IN NONLINEAR ELASTICITY [J].
CIARLET, PG ;
NECAS, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 97 (03) :171-188
[19]   A lower bound for a variational model for pattern formation in shape-memory alloys [J].
Conti, S .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2006, 17 (06) :469-476
[20]   On the Theory of Relaxation in Nonlinear Elasticity with Constraints on the Determinant [J].
Conti, Sergio ;
Dolzmann, Georg .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (02) :413-437