To investigate the microstructure and electrochemical properties of Zircaloy-4 induced by Fe ion irradiation with the energy of 150keV at liquid nitrogen temperature, transmission electron microscope analysis (TEM) was employed to analyze the surface layer of the samples irradiated at a dose ranging from 1 x 10(13) to 1 x 1(16) ions/cm(2), and potentiodynamic polarization measurements were used to evaluate the corrosion resistance of Zircaloy-4 in a 1 N H2SO4 solution at room temperature. TEM analyses show that Fe ion irradiation lead to a structural change and amorphous phase formation on the surface of the samples. Moreover, it is indicated from the corrosion tests that with an increase of the irradiation dose, the passive current density increases at first and then decreases rapidly, while the natural corrosion potential goes down at first and then up rapidly. The critical point, where the corrosion properties are transformed from a damaging stage to protecting stage, is at the damage level of 3.19dpa. Finally, the mechanism for the change of corrosion resistance of the Zircaloy-4 samples is discussed. (C) 2003 Elsevier Ltd. All rights reserved.