On the semiclassical limit of the general modified NLS equation

被引:14
作者
Desjardins, B
Lin, CK
机构
[1] CEA, DIF, DCSA, SSA, F-91680 Bruyeres Le Chatel, France
[2] Natl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
关键词
D O I
10.1006/jmaa.2001.7482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the semiclassical limit of the so-called general modified nonlinear Schrodinger equation for initial data with Sobolev regularity, before shocks appear in the limit system. The strict hyperbolicity and genuine nonlinearity are proved for the, dispersion limit of the cubic nonlinear case. The limiting transition from the MNLS equation to the NT-S equation is also discussed. (C) 2001 Academic Press.
引用
收藏
页码:546 / 571
页数:26
相关论文
共 31 条
[1]  
[Anonymous], 1984, APPL MATH SCI
[2]  
[Anonymous], 1992, SOLITARY WAVES PLASM
[3]  
Colin T, 1996, ASYMPTOTIC ANAL, V13, P361
[4]   Semiclassical limit of the derivative nonlinear Schrodinger equation [J].
Desjardins, B ;
Lin, CK ;
Tso, TC .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (02) :261-285
[5]   A review of dispersive limits of (non)linear Schrodinger-type equations [J].
Gasser, I ;
Lin, CK ;
Markowich, PA .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (04) :501-529
[6]   Semiclassical limit of the nonlinear Schrodinger equation in small time [J].
Grenier, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) :523-530
[7]  
Jin S, 1999, COMMUN PUR APPL MATH, V52, P613, DOI 10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.3.CO
[8]  
2-C
[9]  
JIN S, 1994, NATO ADV SCI INST SE, V320, P235
[10]  
KAUP DJ, 1978, J MATH PHYS, V19, P789