A Reversible Nekhoroshev Theorem for Persistence of Invariant Tori in Systems with Symmetry

被引:2
作者
Bambusi, D. [1 ]
机构
[1] Univ Milan, I-20133 Milan, Italy
关键词
Systems with symmetry; Invariant tori; Reversible systems; QUASI-PERIODIC BREATHERS; EQUATIONS; KAM;
D O I
10.1007/s11040-015-9190-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a variant of a theorem by Nekhoroshev on persistence of invariant tori in systems with symmetry. The new proof applies to reversible non Hamiltonian systems equivariant under the action of an Abelian group and is much simpler then the original one.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 14 条
[1]   Quasi periodic breathers in Hamiltonian lattices with symmetries [J].
Bambusi, D ;
Vella, D .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2002, 2 (03) :389-399
[2]   Invariant tori for commuting Hamiltonian PDEs [J].
Bambusi, D. ;
Bardelle, C. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (06) :2484-2505
[3]  
Bambusi D., 2002, MATH PHYS ELECT J, V8, P13
[4]   KAM for Reversible Derivative Wave Equations [J].
Berti, Massimiliano ;
Biasco, Luca ;
Procesi, Michela .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :905-955
[5]   A Birkhoff-Lewis Type Theorem for the Nonlinear Wave Equation [J].
Biasco, Luca ;
Di Gregorio, Laura .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (01) :303-362
[6]  
Corsi L., 2014, ARXIV14032872MATHDS
[7]   The Poincare-Lyapounov-Nekhoroshev theorem [J].
Gaeta, G .
ANNALS OF PHYSICS, 2002, 297 (01) :157-173
[8]  
Giorgilli A., LECT HAMILTONIAN SYS
[9]   Existence and stability of quasiperiodic breathers in the discrete nonlinear Schrodinger equation [J].
Johansson, M ;
Aubry, S .
NONLINEARITY, 1997, 10 (05) :1151-1178
[10]  
Kuksin S.B., 1992, CHAOS SOLITON FRACT, V2, P259