Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

被引:7
作者
Konovalov, Dmitry A. [1 ]
Cocks, Daniel G. [2 ,3 ]
White, Ronald D. [3 ]
机构
[1] James Cook Univ, Informat Technol Acad, Townsville, Qld 4811, Australia
[2] James Cook Univ, Coll Sci & Engn, Townsville, Qld 4811, Australia
[3] Flinders Univ S Australia, Coll Chem & Phys Sci, Adelaide, SA 5042, Australia
基金
英国工程与自然科学研究理事会;
关键词
CHARGED-PARTICLE TRANSPORT; MONTE-CARLO-SIMULATION; MAGNETIC-FIELDS; 2-TERM APPROXIMATION; ARBITRARY STRENGTH; KINETIC-THEORY; GASES; SWARMS; DIFFUSION; MOBILITY;
D O I
10.1140/epjd/e2017-80297-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged.
引用
收藏
页数:10
相关论文
共 72 条
[1]   Comparisons of sets of electron-neutral scattering cross sections and swarm parameters in noble gases: II. Helium and neon [J].
Alves, L. L. ;
Bartschat, K. ;
Biagi, S. F. ;
Bordage, M. C. ;
Pitchford, L. C. ;
Ferreira, C. M. ;
Hagelaar, G. J. M. ;
Morgan, W. L. ;
Pancheshnyi, S. ;
Phelps, A. V. ;
Puech, V. ;
Zatsarinny, O. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (33)
[2]  
[Anonymous], 2019, COURSE THEORETICAL P
[3]  
[Anonymous], 1981, COURSE THEORETICAL P
[4]   Kinetic solvers with adaptive mesh in phase space [J].
Arslanbekov, Robert R. ;
Kolobov, Vladimir I. ;
Frolova, Anna A. .
PHYSICAL REVIEW E, 2013, 88 (06)
[5]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[6]   Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields [J].
Biagi, SF .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 421 (1-2) :234-240
[7]   Dynamics of a guided streamer ('plasma bullet') in a helium jet in air at atmospheric pressure [J].
Boeuf, J-P ;
Yang, L. L. ;
Pitchford, L. C. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (01)
[8]   Boltzmann equation and Monte Carlo studies of electron transport in resistive plate chambers [J].
Bosnjakovic, D. ;
Petrovic, Z. Lj ;
White, R. D. ;
Dujko, S. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (43)
[9]   Kinetic theory of positron-impact ionization in gases [J].
Boyle, G. J. ;
Tattersall, W. J. ;
Cocks, D. G. ;
Dujko, S. ;
White, R. D. .
PHYSICAL REVIEW A, 2015, 91 (05)
[10]   Plasma-liquid interactions: a review and roadmap [J].
Bruggeman, P. J. ;
Kushner, M. J. ;
Locke, B. R. ;
Gardeniers, J. G. E. ;
Graham, W. G. ;
Graves, D. B. ;
Hofman-Caris, R. C. H. M. ;
Maric, D. ;
Reid, J. P. ;
Ceriani, E. ;
Rivas, D. Fernandez ;
Foster, J. E. ;
Garrick, S. C. ;
Gorbanev, Y. ;
Hamaguchi, S. ;
Iza, F. ;
Jablonowski, H. ;
Klimova, E. ;
Kolb, J. ;
Krcma, F. ;
Lukes, P. ;
Machala, Z. ;
Marinov, I. ;
Mariotti, D. ;
Thagard, S. Mededovic ;
Minakata, D. ;
Neyts, E. C. ;
Pawlat, J. ;
Petrovic, Z. Lj ;
Pflieger, R. ;
Reuter, S. ;
Schram, D. C. ;
Schroter, S. ;
Shiraiwa, M. ;
Tarabova, B. ;
Tsai, P. A. ;
Verlet, J. R. R. ;
von Woedtke, T. ;
Wilson, K. R. ;
Yasui, K. ;
Zvereva, G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)