Role of transverse magnetic field in the capacitive discharge

被引:26
作者
You, S. J. [1 ]
Hai, T. T. [1 ]
Park, M. [1 ]
Kim, D. W. [1 ]
Kim, J. H. [1 ]
Seong, D. J. [1 ]
Shin, Y. H. [1 ]
Lee, S. H. [3 ]
Park, G. Y. [3 ]
Lee, J. K. [3 ]
Chang, H. Y. [2 ]
机构
[1] Korea Res Inst Stand & Sci, Ctr Vacuum Technol, Taejon 305306, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea
[3] Pohang Univ Sci & Technol, Dept Elect & Elect Engn, Pohang 790784, South Korea
关键词
Capacitive; Discharge; Magnetic field; Langmuir probe; ELECTRON-ENERGY DISTRIBUTION; HEATING-MODE TRANSITION; POWER DISSIPATION; RF; KINETICS; TRANSPORT; SHEATHS;
D O I
10.1016/j.tsf.2011.01.384
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influence of magnetic field on the plasma which is one of the oldest problems in plasma physics and remains of great interest in plasma fusion studies, recently has been an important problem in many plasma discharge used in processing semiconductor materials, because the application of a magnetic field results in enhancement of some desirable features of specific plasma sources. In this paper, the transverse magnetic field effects on the radio frequency capacitive discharge of low and intermediate gas pressure (1.33 Pa similar to 40.00 Pa) are reviewed to clarify the role of the magnetic field in the capacitive discharge. Lots of physical phenomena induced by transverse magnetic field, such as power dissipation mode transition, low energy electron heating/cooling, axial variation of electron density and temperature and E x B drift are presented and analyzed. This article is expected to provide qualitative insight to understand the role of magnetic field in the capacitive discharges. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:6981 / 6989
页数:9
相关论文
共 50 条
  • [1] Transverse magnetic field effects on spatial electron temperature distribution in a 13.56 MHz parallel plate capacitive discharge
    Binwal, S.
    Patil, Y.
    Karkari, S. K.
    Nair, L.
    PHYSICS OF PLASMAS, 2020, 27 (03)
  • [2] Concerning arc discharge in a transverse magnetic field
    Zharinov, AV
    PLASMA PHYSICS REPORTS, 2003, 29 (07) : 631 - 634
  • [3] Concerning arc discharge in a transverse magnetic field
    A. V. Zharinov
    Plasma Physics Reports, 2003, 29 : 631 - 634
  • [4] Influence of magnetic field gradient on the capacitive argon discharge at 8 MHz and 40 MHz
    Wu, Huanhuan
    Lin, Hanlei
    Zhang, Tianxiang
    Wu, Hao
    Yang, Shali
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2023, 32 (05)
  • [5] Influence of a transverse magnetic field on the characteristics of a dc gas discharge
    V. K. Pashnev
    V. E. Strel’nitskij
    O. A. Opalev
    V. I. Gritsyna
    I. I. Vyrovets
    Yu. A. Bizyukov
    Plasma Physics Reports, 2004, 30 : 797 - 803
  • [6] Influence of a transverse magnetic field on the characteristics of a DC gas discharge
    Pashnev, VK
    Strel'nitskij, VE
    Opalev, OA
    Gritsyna, VI
    Vyrovets, II
    Bizyukov, YA
    PLASMA PHYSICS REPORTS, 2004, 30 (09) : 797 - 803
  • [7] Control of electron energy distribution by adding a pulse inductive field in capacitive discharge
    Lee, Hyo-Chang
    Chung, Chin-Wook
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (06)
  • [8] Frequency Dependence of Ion Energy at the Outlet of a Capacitive RF Discharge Placed in an External Magnetic Field with a Predominant Radial Component
    Shvydkiy, G. V.
    Vavilin, K. V.
    Zadiriev, I. I.
    Kralkina, E. A.
    Nikonov, A. M.
    PLASMA PHYSICS REPORTS, 2024, 50 (11) : 1448 - 1451
  • [9] Spatial symmetry breaking in single-frequency CCP discharge with transverse magnetic field
    Sharma, Sarveshwar
    Kaganovich, Igor D.
    Khrabrov, Alexander V.
    Kaw, Predhiman
    Sen, Abhijit
    PHYSICS OF PLASMAS, 2018, 25 (08)
  • [10] Transverse magnetic field effects on the high-voltage pulsed discharge plasma in helium
    Chen, C.
    Rabadanov, K. M.
    Ashurbekov, N. A.
    Yuan, C.
    Shakhrudinov, A. M.
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (01)